Article
Macromolecules, Vol. 43, No. 23, 2010 9769
glycol) (PEG) network with movable sliding-graft poly(2-hydro-
xyethyl methacrylate) (PHEMA) brush (s-IPN-PEG/R-CD-sg-
PHEMA), were successfully prepared by simultaneous “click
chemistry” and atom transfer radical polymerization (ATRP).
The number of the sliding-graft PHEMA can be regulated by
threading different amount of R-CD-BIBB to N3-PEG-N3. The
chain length of sliding-graft PHEMA can be tunable by changing
the ATRP polymerization time. The s-IPN-PEG/R-CD-sg-
PHEMAs exhibit a good physical and mechanical property. The
s-IPN-PEG/R-CD-sg-PHEMAs hydrogels with various mechan-
ical strengths were prepared by changing the molecular structure,
such as the number and the chain length of sliding-graft polymer.
Most important, the s-IPN-PEG/R-CD-sg-PHEMA hydrogels
exhibit a strong antiwater-extraction. The diffusion of linear
penetrating polymers from the networks under long time solvent
immersion was largely prevented in s-IPN-PEG/R-CD-sg-
PHEMA hydrogels, because the interpenetrating polymers were
fixed on the network lattices. Furthermore, the sliding-graft
polymers can afford the s-IPN-PEG/R-CD-sg-PHEMAs more
functionalities, which extended their applications in biomedical
fields. In summary, simultaneous “click chemistry” and ATRP is
a powerful method to prepare semi-IPN with well-defined and
designed molecular structures.
Figure 9. XPS C 1s core-level spectra of (a) of the surface of s-IPN-
PEG/PHEMA, (b) of the cross-section of s-IPN-PEG/PHEMA, (c) of
the surface of s-IPN-PEG/R-CD1.1-sg-PHEMA35, and (d) of the cross-
section of s-IPN-PEG/R-CD1.1-sg-PHEMA35 networks after 20 h water
immersion, respectively.
Acknowledgment. This work was supported by National
Natural Science Foundation of China under the Grant 20804009
and 21074022, and the Key Project of Chinese Ministry of
Education Grant 108062. This work was also supported by the
Program for New Century Excellent Talents in University of Grant
NCET-08-0117.
remarkable as the starting few hours, and maintained around
of 6% after 72 h. The sol-gel fraction of s-IPN-PEG/R-CD-
sg-PHEMA and s-IPN-PEG/PHEMA hydrogels can also be
calculated from the data of SR and gel fraction of corre-
sponding networks. The data in Table 1 shows the sol-gel
fraction of s-IPN-PEG/R-CD-sg-PHEMA also maintained
stable after water extraction, while the sol-gel fraction of the
s-IPN-PEG/PHEMA changed from 2.7:6.3:91.0 ([PEG/R-
CD]:[PHEMA]:[H2O]) to 2.8:5.9:91.3.
References and Notes
(1) Calvert, P. Adv. Mater. 2009, 21, 743–756.
The water extraction of s-IPN-PEG/R-CD-sg-PHEMA
hydrogel was also studied by XPS measurements. Figure 9
shows the XPS C 1s core-level spectra (a) of the surface of
s-IPN-PEG/PHEMA, (b) of the cross-section of s-IPN-
(2) Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P.; Noolandi, J.;
Ta, C. N.; Frank, C. W. Polym. Adv. Technol. 2008, 19, 647–657.
(3) BajPai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Prog. Polym.
Sci. 2008, 33, 1088–1118.
(4) Jin, S. P.; Liu, M. Z.; Zhang, F.; Chen, S. L.; Niu, A. Z. Polymer
2006, 47, 1526–1532.
PEG/PHEMA, (c) of the surface of s-IPN-PEG/R-CD1.1
-
sg-PHEMA35, and (d) of the cross-section of s-IPN-PEG/
R-CD1.1-sg-PHEMA35 after 20 h water immersion, respec-
tively. The spectrum of s-IPN-PEG/PHEMA can be curve-
fitted into three peak components with bonding energy (BEs)
at about 284.6, 286.2, and 288.4 eV, attributable to C-H/
C-C, C-O/C-Nd and O-CdO, respectively. Figure 9a
has a very strong peak component at 286.2 eV, which is far
from Figure 9b, but very similar to that of Figure 2a (pristine
PEG network from CuAAC). The great difference in the
chemical components between the surface and inside of s-IPN-
PEG/PHEMA suggested, that 20 h of water immersion cause a
large amount of the interpenetrating linear PHEMAs diffusing
out from PEG networks. The spectrum of s-IPN-PEG/R-
CD1.1-sg-PHEMA35 network can be curve-fitted into four peak
components with bonding energy (BEs) at about 284.6, 286.2,
287.6, and 288.4 eV, attributable to C-H/C-C, C-O/C-Nd,
O-C-O and O-CdO, respectively. The similar spectra in
Figure 9, parts c and d, suggest that after 20 h of water
immersion, the s-IPN-PEG/R-CD-sg-PHEMA has a same
chemical component both on surface and in bulks. XPS results
suggest the s-IPN-PEG/R-CD-sg-PHEMAs exhibit a strong
antiwater-extraction property, and the diffusion of interpene-
trating linear polymers is largely prevented because the
interpenetrating polymers are fixed on the network lattices.
(5) Gitsov, I.; Zhu, C. J. Am. Chem. Soc. 2003, 125, 11228–11234.
(6) Reddy, T. T.; Kano, A.; Maruyama, A.; Hadano, M.; Takahara,
A. Biomacromolecules 2008, 9 (4), 1313–1321.
(7) Uzum, O. B.; Karadag, E. J. Polym. Res. 2007, 14, 483–488.
(8) Rasmussen, K.; Qstgaard, K. Water Res. 2003, 37, 519–524.
(9) Kopecek, J.; Yang, J. Y. Polym. Int. 2007, 56, 1078–1098.
(10) Ulijn, R. V.; Bibi, N.; Jayawarna, V.; Thornton, P. D.; Todd, S. J.;
Mart, R. J.; Smith, A. M.; Gough, J. E. Mater. Today 2007, 10, 40–48.
(11) Chaterji, S.; Kwon, K.; Park, K. Prog. Polym. Sci. 2007, 32, 1083–
1122.
(12) Lee, W.; Chen, Y. J. Appl. Polym. Sci. 2001, 82, 2487.
(13) Johnson, J. A.; Turro, N. J.; Koberstein, J. T.; Mark, J. E. Prog.
Polym. Sci. 2010, 35 (3), 332–337.
(14) Okumura, Y.; Ito, K. Adv. Mater. 2001, 13, 485–487.
(15) Ikeda, T.; Ooya, T.; Yui, N. Macromol. Rapid Commun. 2000, 21,
1257–1262.
(16) Fan, M. M.; Yu, Z. J.; Luo, H. Y.; Zhang, S.; Li, B. J. Macromol.
Rapid Commun. 2009, 30, 897–903.
(17) Haraguchi, K.; Li, H. J. Angew. Chem., Int. Ed. 2005, 44, 6500–6504.
(18) Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.;
Mason, A. F.; Hedrick, J. L.; Liao, Q.; Frank, C. W.; Kingsbury,
K.; Hawker, C. J. Chem. Commun. 2006, 26, 2774–2776.
(19) Crescenzi, V.; Cornelio, L.; Di Meo, C.; Nardecchia, S.; Lamanna,
R. Biomacromolecules 2007, 8, 1844–1850.
(20) Ossipov, D. A.; Hilborn, J. Macromolecules 2006, 39, 1709–1718.
(21) Patten, T. E.; Matyjaszewski, K. Adv. Mater. 1998, 10, 901–915.
(22) Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci.
2001, 26, 337–377.
(23) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921–2290.
(24) Pyun, J.; Kowalewski, T.; Matyjaszewski, K. Macromol. Rapid
Commun. 2003, 24 (18), 1043–1059.
(25) Buathong, S.; Peruch, F.; Isel, F.; Lutz, P. J. Design Monomer
Polym. 2004, 7 (6), 583–601.
4. Conclusions
A kind of novel semi-interpenetrating polymer networks
(semi-IPN) with a unique molecular structure, poly(ethylene