Table 1 IC50 values (nM) of the compounds towards binding of L-, P- and E-selectins (N.I.: no inhibition below 1 mM)
7b
4b
4c
Compound
Total
Per Gal
Total
Per Gal
Total
Per Gal
L-Selectin
P-Selectin
E-Selectin
60 000
30 000
N.I.
240 000
120 000
N.I.
70
1000
70 000
2450
35 000
2 450 000
1
7
N.I.
35
245
N.I.
with respect to the inhibitor concentration was recorded and calculated as
x% of the control. The concentration of inhibitor, that causes 50%
reduction in the binding of the labelled reference ligand, was referred to
as IC50 value. Each concentration was applied at least in duplicate.
galactose basis the IC50 value for structure 4b shows in case of
L-selectin a 100-fold enhancement of the inhibitory power
over the tetravalent counterpart 7b. This dependence of affi-
nity increase on the number of Gal residues per polymer
clearly is a result of these Gal residues being engaged in
binding at multiple binding sites. Around a four-fold increase
in affinity per sugar was observed in case of P-selectin inhibi-
tion when the number of Gal moieties was increased from 4 to
35 per molecule of HPG. The identity of the binding elements,
structure of the scaffold and numbers of binding groups are all
parameters that influence the mechanism by which a ligand
acts. These multivalent HPG-Gal architectures contain
elements of structural complexity which are not present in
the tetravalent counterpart.
1 A. Varki, Glycobiology, 1993, 3, 97.
2 E. J. Toone, Curr. Opin. Struct. Biol., 1994, 4, 719; J. J. Lundquist
and E. J. Toone, Chem. Rev., 2002, 102, 555.
3 K. Ozaki, R. T. Lee, Y. C. Lee and T. Kawasaki, Glycoconjugate
J., 1995, 12, 268; J. G. Zhang, O. B. Krajden, R. K. Kainthan, J.
N. Kizhakkedathu, I. Constantinescu, D. E. Brooks and M. I. C.
Gyongyossy-Issa, Bioconjugate Chem., 2008, 19, 1241.
4 T. K. Lindhorst, Top. Curr. Chem., 2002, 218, 201; M. Touaibia
and R. Roy, Trends Glycosci. Glycotechnol., 2003, 15, 291; R. J.
Pieters, D. T. S. Rijkers and R. M. J. Liskamp, QSAR Comb. Sci.,
2007, 26, 1181.
5 Y. M. Chabre, C. Contino-Pepin, V. Placide, T. C. Shiao and R.
´
Roy, J. Org. Chem., 2008, 73, 5602; E. Fernandez-Megia, J.
Correa, I. Rodriguez-Meizoso and R. Riguera, Macromolecules,
2006, 39, 2113.
6 S. Xu, M. Kramer and R. Haag, J. Drug Target, 2006, 14, 367; H.
¨
Liu, Z. Shen, S.-E. Stiriba, Y. Chen, W. Zhang and L. Wei,
J. Polym. Chem. Part A: Polym. Chem., 2006, 4, 4165; C. J. Hawker,
´
R. Lee and J. M. J. Frechet, J. Am. Chem. Soc., 1991, 113, 4583.
7 S. E. Stiriba, H. Kautz and H. Frey, J. Am. Chem. Soc., 2002, 124,
9698.
Other studies have shown that despite the great structural
complexity of many bioactive oligosaccharides, often only
small portions of these molecules are actually recognized by
their receptors. The remaining part seems to act as a scaffold
that orients the binding determinants in the appropriate
conformation.3
In this study we show, how even a simple carbohydrate,
such as galactose, can give relatively high inhibition against
selectins, when presented in a multivalent manner. Sulfated,
multivalent galactose constructs gave even stronger L- and
P-selectin inhibition in the lower nanomolar range. Although it
is known that the galactose unit of sLex makes contacts to
selectin proteins,15,16 it was surprising for us that polyvalent
galactose without any further modification serves as a highly
active selectin ligand. To the best of our knowledge this has
not been described previously.
8 A. Sunder, R. Mulhaupt, R. Haag and H. Frey, Macromolecules,
2000, 12, 235; A. Sunder, J. Heinemann and H. Frey, Chem.–Eur.
J., 2000, 6, 2499.
¨
9 R. K. Kainthan, J. Janzen, E. Levin, D. V. Devine and D. E.
Brooks, Biomacromolecules, 2006, 7, 703; R. K. Kainthan, E. B.
Muliawan, S. G. Hatzikiriakos and D. E. Brooks, Macromolecules,
2006, 39, 7708.
10 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., 2001,
113, 2056; H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew.
Chem., Int. Ed., 2001, 40, 2004; P. Wu, A. K. Feldman, A. K.
Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet,
K. B. Sharpless and V. V. Fokin, Angew. Chem., 2004, 116, 4018;
P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B.
Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin,
Angew. Chem., Int. Ed., 2004, 43, 3928.
11 J. A. F. Joosten, V. Loimaranta, C. C. M. Appeldoorn, S. Haataja,
F. A. El Maate, R. M. J. Liskamp, J. Finne and R. J. Pieters,
J. Med. Chem., 2004, 47, 6499.
12 D. Vestweber and J. E. Blanks, Physiol. Rev., 1999, 79, 181; E. L.
Berg, J. Magnani, R. A. Warnock, M. K. Robinson and E. C.
Butcher, Biochem. Biophys. Res. Commun., 1992, 184, 1048; A.
Varki, Proc. Natl. Acad. Sci. USA, 1994, 91, 7390.
The developed protocols for multivalent glycopolymer
preparation via click chemistry, in reproducible high yields
(up to 90%), are readily adaptable to include a range of
carbohydrate based binding motifs (protected, free OH and
sulfated carbohydrates). Additional work is underway to
further increase the inhibitory effect and to more thoroughly
investigate the interaction between the peripheral carbo-
hydrates and selectins.
13 S. Enders, G. Bernhard, A. Zakrzewicz and R. Tauber, Biochim.
Biophys. Acta, 2007, 1770, 1441.
This study has been carried with financial support from the
Fonds der Chemischen Industrie (FCI, Liebig Stipendium to
I. Papp) as well as from collaborative research center ‘SFB 765’.
14 T. Ikamia, N. Tomiya, T. Morimoto, N. Iwata, R. Yamashita, T.
Jomori, T. Usui, Y. Suzuki, H. Tanaka, D. Miyamoto, H. Ishida, A.
Hasegawa and M. Kiso, J. Carbohydr. Chem., 1998, 17, 499; S. M.
Rele, W. Cui, L. Wang, S. Hou, G. Barr-Zarse, D. Tatton, Y. Gnanou,
J. D. Esko and E. L. Chaikof, J. Am. Chem. Soc., 2005, 127, 10132.
15 K. Needham and R. L. Schnaar, Proc. Natl. Acad. Sci. USA, 1993,
90, 1359; D. D. Manning, X. Hu, P. J. Beck and L. L. Kiessling,
J. Am. Chem. Soc., 1997, 119, 3161; D. D. Manning, X. Hu, P. J.
Beck and L. L. Kiessling, Tetrahedron, 1997, 53, 11937.
16 B. J. Graves, R. L. Crowther, C. Chandran, J. M. Rumberger, S.
Li, K.-S. Huang, D.-H. Presky, P. C. Familletti, B. A. Wolitzky
and D. K. Burns, Nature, 1994, 367, 532; W. S. Somers, J. Tang, G.
D. Shaw and R. T. Camphausen, Cell, 2000, 103, 467.
Notes and references
z SPR assay description in brief: Selectin functionalized Au-nanoparticles
were passed over a standard ligand (20 mol% sLex and 5 mol%
sulfotyrosine conjugated to polyacrylamide) of all selectins, immobilized
on the sensor chip. The resulting binding signal was set to 100% and
serves as a control. To evaluate selectin binding of potential inhibitors, a
defined preincubation step with the selectin nanoparticles was performed
before its passage over the sensor chip. Reduction of the binding signal
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5851–5853 | 5853