1816 Biomacromolecules, Vol. 11, No. 7, 2010
Xu et al.
and good thermal stability, as well as good antifouling
properties. The so-prepared semi-PEG/PHEMA-sIPN and
full-PEG/PHEMA-sIPN are, thus, potentially useful as
biomedical materials and vehicles for drug delivery. The
synthesis method also provides a versatile platform for
preparing other functional semi- or full-sIPNs by using
different monomers and different azide/acetylene functional
polymer pairs.
Acknowledgment. This work was supported by the Na-
tional Natural Science Foundation of China Grant 20804009
and the Key Project of Chinese Ministry of Education Grant
108062. This work was also supported by the Program for
New Century Excellent Talents in University Grant NCET-
08-0117 and the Southeast University Foundation Grants
400741012 and 4007041023.
Figure 7. Differential scanning calorimetry (DSC) of (a) the PHEMA-
co-PPEGDA network from ATRP, (b) semi-PEG/PHEMA-sIPN via
simultaneous “click chemistry” and ATRP, (c) full-PEG/PHEMA-sIPN
via simultaneous “click chemistry” and ATRP, and (d) PEG-based
network from “click chemistry”.
References and Notes
(1) Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P.; Noolandi, J.; Ta,
C. N.; Frank, C. W. Polym. AdV. Technol. 2008, 19, 647–657.
(2) Calvert, P. AdV. Mater. 2008, 20, 1–14.
(3) BajPai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Prog. Polym.
Sci. 2008, 33, 1088–1118.
(4) Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. AdV. Mater.
2006, 18, 1345–1360.
(5) Kopecek, J.; Yang, J. Polym. Int. 2007, 56, 1078–1098.
(6) Ulijn, R. V.; Bibi, N.; Jayawarna, V.; Thornton, P. D.; Todd, S. J.;
Mart, R. J.; Smith, A. M.; Gough, J. E. Mater. Today 2007, 10 (4),
40–47.
(7) Chaterji, S.; Kwon, K.; Park, K. Prog. Polym. Sci. 2007, 32, 1083–
1122.
(9) Sperling, L. H. An OVerView of Interpenetrating Networks. In
Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press:
Boca Raton, FL, 1996; Vol. 5.
(10) Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. ReV. 2007,
36, 1369–1380.
(11) Wu, P. A.; Feldman, K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.;
Voit, B.; Pyun, J. J.; Fre´chet, M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928–3934.
(12) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40 (11), 2004–2021.
(13) Binder, W. H.; Sachsenhof, R. Macromol. Rapid Commun. 2007, 28,
15–54.
Figure 8. Protein absorption by (a) the PHEMA-co-PPEGDA network
from ATRP, (b) semi-PEG/PHEMA-sIPN via simultaneous “click
chemistry” and ATRP, (c) full-PEG/PHEMA-sIPN via simultaneous
“click chemistry” and ATRP, and (d) PEG-based network from “click
chemistry” after equilibration in 1% (mg/mL) PBS solution of BSA at
the physiological pH of 7.4 for 48 h.
(14) Lutze, J. Angew. Chem., Int. E 2007, 46, 1018–1025.
(15) Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol.
Rapid Commun. 2008, 29, 1052–1072.
(16) Van Dijk, M.; Rijkers, D. T. S.; Liskamp, R. M. J.; Van Nostrum,
C. F.; Hennink, W. E. Bioconjugate Chem. 2009, 20, 2001–2016.
(17) Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.;
Mason, A. F.; Hedrick, J. L.; Liao, Q.; Frank, C. W.; Kingsbury, K.;
Hawker, C. J. Chem. Commun. 2006, 2774–2776.
(18) Crescenzi, V.; Cornelio, L.; Di Meo, C.; Nardecchia, S.; Lamanna,
R. Biomacromolecules 2007, 8 (6), 1844–1850.
(19) Ossipov, D. A.; Hilborn, J. Macromolecules 2006, 39, 1709–1718.
(20) Patten, T. E.; Matyjaszewski, K. AdV. Mater. 1998, 10, 901–915.
(21) Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci. 2001,
26, 337–377.
(22) Matyjaszewski, K.; Xia, J. Chem. ReV. 2001, 101, 2921–2290.
(23) Pyun, J.; Kowalewski, T.; Matyjaszewski, K. Macromol. Rapid
Commun. 2003, 24 (18), 1043–1059.
(24) Buathong, S.; Peruch, F.; Isel, F.; Lutz, P. J. Des. Monomer Polym.
2004, 7 (6), 583–601.
(25) Yu, Q.; Zeng, F.; Zhu, S. Macromolecules 2001, 34 (6), 1612–1618.
(26) Mespouille, L.; Vachaudez, M.; Suriano, F.; Gerbaux, P.; Coulembier,
O.; Degee, P.; Flammang, R.; Dubois, P. Macromol. Rapid Commun.
2007, 28, 2151–2158.
(27) Mantovani, G.; Ladmiral, V.; Tao, L.; Haddleton, D. M. Chem.
Commun. 2005, 2089–2091.
(28) Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Macromolecules
2005, 38, 3558–3561.
network (1.0 mg/g), semi-PEG/PHEMA-sIPN (2.5 mg/g), and
full-PEG/PHEMA-sIPN (2.6 mg/g). PEG is well-known for its
unique physiological behavior in suppressing the level of protein
absorption.46,47 The good antifouling properties of pristine PEG
network is attributable to the Lewis base component of the PEG
molecules. Thus, the introduction of PEG network into semi-
PEG/PHEMA-sIPN and full-PEG/PHEMA-sIPN has impacted
the sIPNs with good antifouling properties.
4. Conclusions
Simultaneous interpenetrating polymer networks (sIPNs)
have been prepared via concurrent “click chemistry” and
ATRP. Thus, semi-PEG/PHEMA-sIPN or full-PEG/PHEMA-
sIPN were prepared from a reaction mixture of N3-PEG-N3,
TPOM, EBB, CuBr, PMDETA, and HEMA (or HEMA and
PEGDA) in DMF. The approach of simultaneous “click
chemistry” and ATRP is effective in IPN formation and
exhibits several advantages, including high gel yield, fast
gelation rate, mild reaction conditions, and high chemose-
lectivity. The so-prepared semi- or full-sIPNs also exhibit
good and tunable physical and mechanical properties, such
as a high degree of swelling, good mechanical properties,
(29) Topham, P. D.; Sandon, N.; Read, E. S.; Madsen, J.; Ryan, A. J.;
Armes, S. P. Macromolecules 2008, 41, 9542–9547.