2
Tetrahedron
converted into its mesylate 14. We next sought to prepared
pyrrolidine core unit for which the azide functionality in 14 was
reduced using Staudinger condition (PPh , THF/H O) to give free
Conclusion
In conclusion a straightforward enantioselective synthesis of
+)-hygroline (1) and (+)-pseudohygroline (2) has been achieved
with good overall yield and high optical purity. The key reaction
employed was asymmetric Keck allylation of aldehyde and
diastereoselective CBS reduction of methyl ketone to introduce
chirality. The synthetic strategy described here has significant
potential for the synthesis of variety of other biologically
important pyrrolidine alkaloids.
3
2
(
amine, which underwent subsequent intramolecular cyclization,
Acknowledgments
We thank SERB-DST (GAP302326), New Delhi for funds.
The authors are also thankful to Dr. V. V. Ranade, Chair,
Chemical Engineering and Process Development Division for
his constant encouragement and support.
References and notes
1
.
(a) Massio, G.; Delaude, C. In The Alkaloids: Brossi, A., Ed.:
Acadamic Press: San Diego, 1986; Vol. 27, P 270; (b) Pinder, A.
R. Nat. Prod. Rep. 1992, 17. For reviews on pyrrolidine alkaloids
see: (c) Pinder, A. R. Nat. Prod. Rep. 1992, 9, 491 (d) Wang, C. J.
J.; Wuonola, M. A. Org. Prep. Proced. Int. 1992, 583; (e)
Plunkett, A. O. Nat. Prod. Rep. 1994, 11, 581; (f) Harrison, T.
Contemp. Org. Synth. 1995, 2, 209.
2
.
a) Gootz, T.D.;ClinicalMicrobiology Reviews, 1990, 13; (b)
Kahan,J. S.; Kahan,F.M.; Goegelman,R.; Currie,S.A.; Jackson,
M.; Stapley, E.A.; Miller, T.A.; Miller,A.K.; Hendlin,D.;
Mochalest, S.; Hernandezt, S.;Wwoodruff, H.B.; Birnbaum, J.; J.
Antibiotics, 1979, 32,1 (c) Naoki, A. R.; Nash, J; Russell J. M.;
George W. J. Fleet. Tetrahedron: Asymmetry 2000, 11, 1645. (d)
Lin, N-H; Carrera Jr., G.M.; Anderson, D. J.; J. Med. Chem.,
1994, 37, 3542; (e) Elliott, R. L.; Ryther, K.B.; Anderson J.D.;
Piattoni-Kaplan, M.; Kuntzweiler T.A.; Donnelly-Roberts, D.;
Americ, S.P.; Holladay, M. W.; Bioorg. Med. chem. lett.; 1997, 7,
2
703.
(a) Platonava, T. F.; Kuzovkov, A. D. Med. Prom. SSSR 1963, 17,
9; (b) Fitzgerald, J. S. Aust. J. Chem. 1965, 18, 589; (c) Martin,
S. A.; Rovirosa, J.; Gambaro, V.; Castillo, M. Phytochemistry
980, 19, 2007.
3
.
Scheme 1. Reaction conditions: (i) BnBr, NaH, DMF, 0 °C, 2
1
h, 88%; (ii) TEMPO, BAIB, CH
BINOL, Ti(OiPr) , allyltributyltin, 4 A° MS, CH
4 h, 86%; (iv) MsCl, TEA, CH Cl2, 0 ºC, 1 h; (v) NaN
0 °C, 4 h, 74% (over two steps); (vi) DDQ, H O, CH
2
Cl
2
, 0 °C, 1 h, 93%; (iii) (R)-
Cl , -20 °C,
, DMF,
Cl , 25
4
2
2
1
2
8
2
3
4. Robins, R. J.; Abraham, T. W.; Parr, A. J.; Eagles, J.; Walton, N.
J. J. Am. Chem. Soc. 1997, 119, 10929.
2
2
2
5
.
(a) Murahashi, S.; Imada, Y.; Kohno, M.; Kawakami, T. Synlett
°
C, 28 h, 95%; (vii) MsCl, TEA, 0 °C, 1 h, 99.5%; (viii) PPh
THF, H O, 45 °C, 24 h, Cbz-Cl, TEA, CH Cl , 8 h, 63%; (ix)
PdCl (10 mol%), CuCl (10 mol%), DMF:H O, O , 25 °C, 3 h,
6%; (x) (R)-CBS Catalyst, BH .THF, THF, 25 °C, 30 min,
5%; (xi) LiAlH , THF, 60 °C, 8 h, 87%; (xii) (S)-CBS
3
,
1
1
993, 395; (b) Louis, C.; Hootele, C. ́ Tetrahedron: Asymmetry
997, 8, 109; (c) Enierga, G.; Hockless, D. C.; Perlmutter, P.;
2
2
2
2
2
2
Rose, M.; Sjoberg, S.; Wong, K. Tetrahedron Lett. 1998, 39,
2813; (d) Knight, D. W.; Salter, R. Tetrahedron Lett. 1999, 40,
5915; (e) Vanucci-Bacque, C.; Calvet-Vitale, S.; Fargeau-
Bellassoued, M. C.; Lhommet, G. ARKIVOC 2007.(xv), 148. (f)
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Smith, A. D.
Tetrahedron 2009, 65, 10192; (g) Bhat, C.; Tilve, S. G.
Tetrahedron Lett. 2011, 52, 6566. (h) Takahata, H.; Kubota, M.;
Momose, T. Tetrahedron: Asymmetry 1997, 8, 2801; (i) Bates, R.
W.; Sa-Ei, K. Tetrahedron 2002, 58, 5957; (j) Liniger, M.;
Estermann. K.; Karl-Heinz Altmann, K-H. J. Org. Chem. 2013,
7
7
3
4
Catalyst, BH3.THF, THF, 25 °C, 30 min, 75%; (xiii) LiAlH
THF, 60 °C, 8 h, 88.8%.
4
,
to give pyrrolidine core unit. Followed by in situ Cbz-protection
of the corresponding cyclic amine to furnishes carbamate
1
0
derivative 15. Wacker oxidation [PdCl
mol%), DMF:H O] of terminal alkene 15 afforded methyl ketone
which was further reduced diastereoselectively using (R)-
2
(5 mol%), CuCl (10
7
8, 11066; (k) Bheemreddy, A.; Reddy, U.V.S.; Reddy, B.V.S.;
2
Reddy, C.S.; Nat. Prod. Comm 2014, 9(5), 633; (l) Lee, J.; Lee,
J.E.; Ha, H.J.; Son, S.I.; Lee, W.K.; Tetrahedron Lett. 2015, 56(6),
1
6
1
1
8
56.
3
CBS reduction [CBS (10 mol%), BH .THF (0.6 mol%), THF]
6
.
(a) Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K. J. Org.
Chem. 1986, 51, 2590; (b) Bhat, C.; Tilve, S.G. Tetrahedron
to give secondary alcohol 17 in 75% yield and diastereomeric
excess > 23:1. Finally the conversion of N-Cbz group in 17 to N-
2
013, 69, 6129.
4
methyl group using LiAlH to give a target molecule (+)-
7
8
.
.
Yadav, J. S.; Narasimhulu, G.; Mallikarjuna Reddy, N.; Subba
Reddy, B. V. Tetrahedron Lett. 2010, 51, 1574.
5c
hygroline (1) in 87% yield with overall yield of 15.4% and high
diastereomeric excess in eleven steps (Scheme 1). Similarly
(a) George, S.; Suryavanshi, G,; Sudalai, A. Tetrahedron:
Asymmetry 2010, 21, 558; (b) Kotkar, S. P.; Suryavanshi, G.;
Sudalai, A. Tetrahedron: Asymmetry 2007, 18, 1795; (c) Reddy,
R. S.; Chouthaiwale, P. V.; Suryavanshi, G.; Chavan, V. B.;
Sudalai, A. Chem. Comm. 2010, 46, 5012.
1
1
distereoselective reduction of ketone 16 with (S)-CBS catalyst
to give alcohol 18 in 75% yield and N-Cbz group of 18 was
converted to N-methyl using LiAlH to afford (+)-
pseudohygroline (2) in 88.8% yield with overall yield 15.7%
4
9. (a) Keck, G. E.; Geraci, L. S.; Tetrahedron Lett. 1993, 34, 7827;
b) Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem.
993, 58, 6543; (c) Keck, G. E.; Heumann, S. A. Org. Lett. 2008,
10, 4783.
5c
1
13
(
(
compound 1 and 2 were in complete agreement with the values
Scheme 1). The H and C NMR and other spectral data of
1
5
j
reported in literature