Molecules 2020, 25, 1389
11 of 13
13. Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three Decades of P-gp Inhibitors: Skimming
Through Several Generations and Scaffolds. Curr. Med. Chem. 2012, 19, 1946–2025.
14. Raschi, E.; Ceccarini, L.; De Ponti, F.; Recanatini, M. hERG-related drug toxicity and models for predicting
hERG liability and QT prolongation. Expert Opin. Drug Metab. Tox. 2009, 5, 1005–1021.
+
15. Clancy, C.E.; Kurokawa, J.; Tateyama, M.; Wehrens, X.H.T.; Kass, R.S. K channel structure-activity
relationships and mechanisms of drug-induced QT prolongation. Ann. Rev. Pharm. Toxicol. 2003, 43, 441–
461.
16. Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. Synthesis and assessment of first-generation
polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates. Bioconj.
Chem. 2007, 18, 937–946.
17. Cheng, Y.; Cheng, Y.; Qu, H.; Ma, M.; Xu, Z.; Xu, P.; Fang, Y.; Xu, T. Polyamidoamine (PAMAM)
dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. Eur. J. Med. Chem.
2007, 42, 1032–1038.
18. Ma, M.; Cheng, Y.; Xu, Z.; Xu, P.; Qu, H.; Fang, Y.; Xu, T.; Wen, L. Evaluation of polyamidoamine (PAMAM)
dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur. J.
Med. Chem. 2007, 42, 93–98.
19. Felczak, A.; Wrońska, N.; Janaszewska, A.; Klajnert, B.; Bryszewska, M.; Appelhans, D.; Voit, B.; Różalska,
S.; Lisowska, K. Antimicrobial activity of poly(propylene imine) dendrimers. New J. Chem. 2012, 36, 2215–
2222.
20. Ortega, P.; Copa-Patiño, J.L.; Muñoz-Fernandez, M.A.; Soliveri, J.; Gomez, R.; de la Mata, F.J. Amine and
ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies.
Org. Biomol. Chem. 2008, 6, 3264–3269.
21. Fuentes-Paniagua, E.; Hernández-Ros, J.M.; Sánchez-Milla, M.; Camero, M.A.; Maly, M.; Pérez-Serrano, J.;
Copa-Patiño, J.L.; Sánchez-Nieves, J.; Soliveri, J.; Gómez, R.; et al. Carbosilane cationic dendrimers
synthesized by thiol-ene click chemistry and their use as antibacterial agents. RSC Adv. 2014, 4, 1256–1265.
22. Fuentes-Paniagua, E.; Hernández-Ros, J.M.; Sánchez-Milla, M.; Camero, M.A.; Maly, M.; Pérez-Serrano, J.;
Copa-Patiño, J.L.; Sánchez-Nieves, J.; Soliveri, J.; Gómez, R. et al. Structure-activity relationship study of
cationic carbosilane dendritic systems as antibacterial agents. RSC Adv. 2016, 6, 7022–7033.
23. Fernandez, J.; Acosta, G.; Pulido, D.; Malý, M.; Copa-Patiño, J.L.; Soliveri, J.; Royo, M.; Gómez, R.; Albericio,
F.; Ortega, P.; et al. Carbosilane Dendron-Peptide Nanoconjugates as Antimicrobial Agents. Mol. Pharm.
2019, 16, 2661–2674.
24. Janiszewska, J.; Swieton, J.; Lipkowski, A.W.; Urbanczyk-Lipkowska, Z. Low molecular mass peptide
dendrimers that express antimicrobial properties. Bioorg. Med. Chem. Lett. 2003, 13, 3711–3713.
25. Janiszewska, J.; Urbanczyk-Lipkowska, Z. Synthesis, antimicrobial activity and structural studies of low
molecular mass lysine dendrimers. Acta Biochim. Polonica 2006, 53, 77–82.
26. Klajnert, B.; Janiszewska, J.; Urbanczyk-Lipkowska, Z.; Bryszewska, M.; Shcharbin, D.; Labieniec, M.
Biological properties of low molecular mass peptide dendrimers. Int. J. Pharm. 2006, 309, 208–217.
27. Lind, T.K.; Zielińska, P.; Wacklin, H.P.; Urbańczyk-Lipkowska, Z.; Cárdenas, M. Continuous Flow Atomic
Force Microscopy Imaging Reveals Fluidity and Time-Dependent Interactions of Antimicrobial Dendrimer
with Model Lipid Membranes. ACS Nano 2014, 8, 396–408.
28. Stach, M.; Siriwardena, T.N.; Köhler, T.; van Delden, C.; Darbre, T.; Reymond, J.-L. Combining Topology
and Sequence Design for the Discovery of Potent Antimicrobial Peptide Dendrimers against Multidrug-
Resistant Pseudomonas aeruginosa. Ang. Chem. Int. Ed. 2014, 53, 12827–12831.
29. Michaud, G.; Visini, R.; Bergmann, M.; Salerno, G.; Bosco, R.; Gillon, E.; Richichi, B.; Nativi, C.; Imberty, A.;
Stocker, A.; et al. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide
dendrimers. Chem. Sci. 2016, 7, 166–182.
30. Bergmann, M.; Michaud, G.; Visini, R.; Jin, X.; Gillon, E.; Stocker, A.; Imberty, A.; Darbre, T.; Reymond, J.-
L. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide
dendrimers targeting lectin LecA. Org. Biomol. Chem. 2016, 14, 138–148.
31. Siriwardena, T.N.; Stach, M.; He, R.; Gan, B.-H.; Javor, S.; Heitz, M.; Ma, L.; Cai, X.; Chen, P.; Wei, D.; et al.
Lipidated Peptide Dendrimers Killing Multidrug-Resistant Bacteria. J. Am. Chem. Soc. 2018, 140, 423–432.
32. Mishra, M.K.; Kotta, K.; Hali, M.; Wykes, S.; Gerard, H.C.; Hudson, A.P.; Whittum-Hudson, J.A.; Kannan,
R.M. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis
infections. Nanomed.-Nanotech. Biol. Med. 2011, 7, 935–944.