1120
P. A. Bonvallet et al. / Tetrahedron Letters 52 (2011) 1117–1120
Table 1
CHE-9977546 and CHE-0704026. We thank the Mass Spectrometry
Rates of the thermal cis-8?trans-8 reactiona
Center of the University of Akron and the Department of Macromo-
lecular Science and Engineering at Case Western Reserve Univer-
sity (NSF Grant CHE-0821515) for instrumental support.
Entry
Solvent
k (sÀ1
)
Rel. rate
1
2
3
4
5
6
7
8
9
Acetone
1,4-Dioxane
Hexane
CCl4
CH2Cl2
CHCl3, untreated
CHCl3, washed with 1 M NaHCO3
CHCl3, washed with deionized H2O
CHCl3, washed with 1 M HCl
2.1 Â 10À5
3.1 Â 10À5
3.5 Â 10À5
4.9 Â 10À5
7.7 Â 10À5
3.5 Â 10À4
7.1 Â 10À5
1.9 Â 10À4
1.5 Â 10À2
1
1.5
1.7
2.3
3.7
17
3.4
9.0
710
Supplementary data
Supplementary data (experimental procedures, additional NMR
and UV–visible spectra, and kinetics data) associated with this arti-
a
All reactions took place in the dark at 30.0 °C.
References and notes
1. (a)Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid
Crystals; Zhao, Y., Ikeda, T., Eds.; John Wiley & Sons: Hoboken, NJ, 2009; (b) Roy,
D.; Cambre, J. N.; Sumerlin, B. S. Prog. Polym. Sci. 2010, 35, 278–301; (c) Winnik,
F. M.; Whitten, D. G.; Urban, M. W.; Lopez, G. Langmuir 2007, 23, 1–2; (d)
Yerushalmi, R.; Scherz, A.; van der Boom, M. E.; Kraatz, H. J. Mater. Chem. 2005,
15, 4480–4487; (e) Luzinov, I.; Minko, S.; Tsukruk, V. V. Prog. Polym. Sci. 2004,
29, 635–698.
2. (a) Irie, M. Chem. Rev. 2000, 100, 1683–1684; (b)Photochromism: Molecules and
Systems; Dürr, H., Bouas-Laurent, H., Eds., revised ed.; Elsevier: Boston, 2003.
3. Zhao, Y.; Stoddart, J. F. Langmuir 2009, 25, 8442–8446.
an interaction of the chloride counterion with the protonated azo
compound.16b A similar trend is observed with 8, in which the
acceleration of the reaction is greater with HCl than with trifluoro-
acetic acid (see Supplementary data).
The rate constants from the variously-treated chloroform solu-
tions differ by as much as two orders of magnitude, raising an
intriguing possibility if cis-8 were able to encapsulate smaller
chemical species. The molecular container could be opened with
light (cis?trans at k > 520 nm) to release its included guest rapidly.
Alternatively, cis-8 could remain in the dark but behave as a time-
release capsule, opening slowly under acid-free conditions but
much more quickly in the presence of HCl (with half-lives of
2.7 h and 46 s, respectively). Thus the judicious selection of photo-
chemical input and/or pH environment to govern the isomerization
of 8 provides a range of stimuli for the controllable opening and
closing of the compound.
In summary, two advances have been made in the development
of a stimuli-responsive calixarene-capped azobenzene first at-
tempted by Arduini. First, the inclusion of phenylene spacers in
compound 8 makes the assembly responsive to light, isomerizing
cleanly between trans and cis forms. Second, the sensitivity of 8
to acid (particularly HCl) in the thermal cis?trans reaction in the
dark invites application as a time-release capsule that can be
programed to open over a prescribed timeframe according to solu-
tion pH. Future work on 8 will focus on its binding with electron-
deficient species to evaluate its potential as a light-responsive
molecular container.
4. Samachetty, H. D.; Lemieux, V.; Branda, N. R. Tetrahedron 2008, 64, 8292–8300.
5. (a) Yamauchi, K.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. J.
Am. Chem. Soc. 2008, 130, 5024–5025; (b) Mulder, A.; Jukovic, A.; Huskens, J.;
Reinhoudt, D. N. Org. Biomol. Chem. 2004, 2, 1748–1755.
6. Ref. 2b, Chapter 4.
7. Arduini, A.; Pochini, A.; Secchi, A. Eur. J. Org. Chem. 2000, 2325–2334.
8. (a) Araki, K.; Shimizu, H.; Shinkai, S. Chem. Lett. 1993, 205–208; (b) Araki, K.;
Hisaichi, K.; Kanai, T.; Shinkai, S. Chem. Lett. 1995, 569–570; (c) Araki, K.;
Hayashida, H. Tetrahedron Lett. 2000, 41, 1209–1213.
9. Saha, S.; Leung, K. C.-F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater.
2007, 17, 685–693.
10. Wang, Y.; Bie, F.; Jiang, H. Org. Lett. 2010, 12, 3630–3633.
11. Pipoosananakaton, B.; Sukwattanasinitt, M.; Jaiboon, N.; Chaichit, N.;
Tuntulani, T. Bull. Korean Chem. Soc. 2000, 21, 867–874.
12. Cooke, G.; Rotello, V. M. Chem. Soc. Rev. 2002, 31, 275–286.
13. Bigelow, H. G.; Robinson, D. B. Org. Synth. 1955, Coll. Vol. 3, 103-104.
14. Rau, H. Angew. Chem., Int. Ed. Engl. 1973, 12, 224–235.
15. Cook, A. H.; Jones, D. G.; Polya, J. B. J. Chem. Soc. 1939, 1315–1320.
16. (a) Hartley, G. S. J. Chem. Soc. 1938, 633–642; (b) Ciccone, S.; Halpern, J. Can. J.
Chem. 1959, 37, 1903–1910.
17. Khayer, K.; Sander, W. J. Bangladesh Acad. Sci. 2008, 32, 111–116.
18. (a) Chloroform; MSDS No. C2915 [Online]; Mallinckrodt Baker: Phillipsburg,
(accessed Sept 24, 2010); (b) Methylene chloride; MSDS No. M4420 [Online];
19. Dunn, N. J.; Humphries, W. H.; Offenbacher, A. R.; King, T. L.; Gray, J. A. J. Phys.
Chem. A 2009, 113, 13144–13151.
20. Sokalski, W. A.; Go´ra, R. W.; Bartkowiak, W.; Kobylin´ ski, P.; Sworakowski, J.;
Chyla, A.; Leszczyn´ ski, J. J. Chem. Phys. 2001, 114, 5504.
Acknowledgments
This work was funded by the College of Wooster, the Copeland
Fund for Independent Study, the Wilson Fund, and NSF Grants