2958
A. Verma et al. / Tetrahedron Letters 53 (2012) 2954–2958
H.; Chien, S.-L.; Rong, J.-K. J. Med. Chem. 1998, 41, 3128; (c) Grosso, J. A.;
Nichols, E. D.; Kohli, J. D.; Glock, D. J. Med. Chem. 1982, 25, 703; (d) Somers, F.;
Ouedraogo, R.; Antoine, M.-H.; de Tullio, P.; Becker, B.; Fontaine, J.; Damas, J.;
Dupont, L.; Rigo, B.; Delarge, J.; Lebrun, P.; Pirotte, B. J. Med. Chem. 2001, 44,
2575; (e) Alagarsamy, V.; Dhanabal, K.; Parthiban, P.; Anjana, G.; Deepa, G.;
Murugesan, B.; Rajkumar, S.; Beevi, A. J. J. Pharm. Pharmacol. 2007, 59, 669.
7. Párkányi, P.; Yuan, H. L.; Strömberg, B. H. E.; Evenzahav, E. J. Heterocycl. Chem.
1992, 29, 749–753.
8. Tun-Cheng, C.; Chien-Shu, C.; Fang-Hwa, Y. U.; Ji-Wang, C. Chem. Pharm. Bull.
2004, 52, 1422–1426.
9. El-Hashash, M. A.; Guirguis, D. B.; El-Badry, Y. A. Pharm. Chem. 2011, 3, 147–
159.
cation cesium bromide was expected to give the product fastest
but it catalyzed the reaction slower than the potassium ions.
Among the halides of potassium salts, iodide was even poorer than
chloride. This might be due to a lesser degree of solvation of iodide
than chloride or bromide, leading to the existence of higher con-
centrations of potassium iodide as a tighter ion pair than that of
chloride or bromide ion pairs with potassium ions. Potassium bro-
mide in pure IL was not very effective in catalyzing the reaction, as
was expected.
The cyclization reaction rate was enhanced in ethanol also by
microwave irradiation. In microwave reaction conditions, stabil-
ization of the transition state in step 1 is not that very important
factor because requisite energy could efficiently be delivered to
the reacting species to cross the energy barrier in the transition
state.
A mild, convenient, and efficient protocol for the synthesis of
benzo-annelated cyclic guanidines as 2-aminobenzimidazole, 2-
imino-4-quinazolinone, and 2-amino-5-benzotriazepinone has
been reported by using diamine, amine, and amide derivatives,
respectively, and cyanogen bromide in a mixture of IL in DMSO
(1:10 ratio). The process offered excellent yields of high quality
cyclic guanidines in short reaction times (5–45 min.). A plausible
explanation has been put forward for this IL–DMSO catalyzed
reaction.
10. Wolfe, J. F.; Rathman, T. L.; Sleevi, M. C.; Campbell, J. A.; Greenwood, T. D. J.
Med. Chem. 1990, 33, 161–166.
11. Kumar, A.; Sharma, S.; Archana; Bajaj, K.; Sharma, S.; Panwar, H.; Singh, T.;
Srivastava, V. K. Bioorg. Med. Chem. 2003, 11, 5293–5299.
12. Copp, B. R.; Fairchild, C. R.; Cornell, L.; Casazza, A. M.; Robinson, S.; Ireland, C.
M. J. Med. Chem. 1998, 41, 3909–3911.
13. McDonald, I. M.; Black, J. W.; Buck, I. M.; Dunstone, D. J.; Griffin, E. P.; Harper, E.
A.; Hull, R. A. D.; Kalindjian, S. B.; Lilley, E. J.; Linney, I. D.; Pether, M. J.; Roberts,
S. P.; Shaxted, M. E.; Spencer, J.; Steel, K. I. M.; Sykes, D. A.; Walker, M. K.; Watt,
G. F.; Wright, L.; Wright, P. T.; Xun, W. J. Med. Chem. 2007, 50, 3101–3112.
14. Babu, G. S.; Rajani, N.; Malathy, S. P.; Srinivas, B.; Kulandaivelu, U.; Rao, J. V.
Pharm. Chem. 2010, 2, 196–204.
15. Leiby, R. W.; Heindel, N. D. J. Pharm. Sci. 1977, 66, 605–606.
16. Bischoff, C.; Schroeder, E. J. Fuer. Prakt. Chem. 1983, 325, 88–94.
17. Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68, 351.
18. Bradley, D. Chem. Ind. 1999, 86, 445.
19. Welton, T. Chem. Rev. 1999, 99, 2071.
20. Blanchard, L.; Hancu, D.; Beckmann, E. J.; Brennecke, J. F. Nature 1999, 399, 28.
21. Dai, S.; Ju, Y. H.; Barner, C. E. J. Chem. Soc., Dalton Trans. 1999, 1201.
22. Hudelston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D.
Chem. Commun. 1998, 1765.
Acknowledgments
23. Yadav, M. R.; Grande, F.; Chouhan, B. S.; Naik, P. P.; Giridhar, R.; Garofalo, A.;
Neamati, N. Eur. J. Med. Chem., in press, Available online 21 December 2011.
24. Freemantle, M. Chem. Eng. News 1998, 76, 32.
25. Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds., 2nd ed.; VCH-
Wiley: Weinheim, Germany, 2007.
26. Wierzbicki, A.; Davis, J. H., Jr. Proceedings of the Symposium on Advances in
Solvent Selection and Substitution for Extraction, March 5–9, 2000, Atlanta,
Georgia; AIChE: New York, 2000.
The authors thank the Director, SAIF-Division of the Punjab Uni-
versity for their help. Also, Amit Verma thanks AICTE, New Delhi
for his NDF-fellowship.
27. Dighe, S. N.; Bhattad, R. V.; Kulkarni, R. R.; Jain, K. S.; Srinivasan, K. V. Synth.
Commun. 2010, 40, 3522–3527.
Supplementary data
28. Dighe, S. N.; Jain, K. S.; Srinivasan, K. V. Tetrahedron Lett. 2009, 50,
6139–6142.
29. Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 110, 9775–9782.
30. Thar, J.; Brehm, M.; Seitsonen, A. P.; Kirchner, B. J. Phys. Chem. B Lett. 2009, 113,
15129–15132.
Supplementary data (experimental procedures and character-
ization data of all the compounds) associated with this article
31. General procedure for the synthesis of 1,3-disubstituted-2,3-dihydro-2-
iminoquinazolin-4(1H)-ones: In
a 50 ml round-bottom flask, substituted
isatoic anhydride (1a–d) (1 mmol), amine (1 mmol) and K2CO3 (1.5 mmol)
were stirred in DMF (2 ml) at 45 °C for 45 min. The progress of the reaction was
monitored by TLC. After completion of the reaction, the reaction mixture was
allowed to cool at room temperature and diluted with small amount of water.
The solid (2a–m) that separated out, was filtered, washed with water, dried
and used for next step without purification. A mixture of 2a–m (1 mmol), in
10% mixture (2 ml) of IL in DMSO and CNBr (2.5 mmol) was stirred at 90 °C for
about 8–10 min and the reaction was monitored by TLC. After completion of
reaction, the reaction mixture was diluted with ice cold water (10 ml). The
solid quinazolinone products (3a–m), which separated out, were filtered,
washed with water and dried. The crude products, thus isolated, were pure
enough (single spot on TLC) and obtained in excellent yields of 90–95%, and
were fully characterized.
References and notes
1. (a) Berlinck, R. G. S. Prog. Chem. Org. Nat. Prod. (Fortsch. Chem. Org. Naturst.)
1995, 66, 339; (b) Berlinck, R. G. S. Nat. Prod. Rep. 1996, 13, 377; (c) Berlinck, R.
G. S. Nat. Prod. Rep. 1999, 16, 339; (d) Berlinck, R. G. S. Nat. Prod. Rep. 2002, 19,
617; (e) Berlinck, R. G. S.; Kossuga, M. H. Nat. Prod. Rep. 2005, 22, 516; (f) Heys,
L.; Moore, C. G.; Murphy, P. J. Chem. Soc. Rev. 2000, 29, 57; (g) Berlinck, R. G. S.;
Burtoloso, A. C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25, 919.
2. Via, L. D.; Gia, O.; Magno, S. M.; Settimo, A. D.; Marini, A. M.; Primofiore, G.;
Settimo, F. D.; Salerno, S. IL Farmaco 2001, 56, 159.
3. Hardtmann, G. E.; Koletar, G.; Pfister, O. R.; Gogerty, J. H.; Iorio, L. C. J. Med.
Chem. 1975, 18, 447.
4. Alagarsamy, V.; Pathak, U. S. Bioorg. Med. Chem. 2007, 15, 3457.
5. Lunn, W. H. W.; Harper, R. W.; Stone, R. L. J. Med. Chem. 1971, 14, 1069.
6. (a) Pendergast, W.; Johnson, J. V.; Dickerson, S. H.; Dev, I. K.; Duch, D. S.; Ferone,
R.; Hall, W. R.; Humphrey, J.; Kelly, J. M.; Wilson, D. C. J. Med. Chem. 1993, 36,
2279; (b) Chern, J.-W.; Tao, P.-L.; Wang, K.-C.; Gutcait, A.; Liu, S.-W.; Yen, M.-
32. Microwave method: Microwave reactions were carried out using CEM-Discover
Mono-mode Micro-reactor. Reaction mixtures were irradiated at 90 °C with
150 W micropower for 5 min. The progress of the reactions was monitored by
TLC.