4
Tetrahedron Letters
24.
Matsumura Y., Inoue M., Nakamura Y., Talib I. L., Maki T.,
azabicyclo[n.1.0]alkanes, in particular, 3-azabicyclo[3.1.0]-
Onomura O. Tetrahedron Lett. 2000; 41: 4619–4622.
Medda A., Lee H.-S. Synlett. 2009; 2009: 921–924.
Yang C., Shen H. Tetrahedron Lett. 1993; 34: 4051–4054.
Adamovskyi M. I., Artamonov O. S., Tymtsunik A. V., Grygorenko
O. O. Tetrahedron Lett. 2014; 55: 5970–5972.
hexanes, which was demonstrated by the preparation of the 3,4-
methano-β-proline derivative. It should be noted that this
synthetic sequence included only
commenced from readily available starting compounds.
Therefore, it might be preferable over the existing multistep
approaches to the derivatives of amino acid 22 despite the
moderate yield of the key step – the Corey–Chaykovsky
cyclopropanation (29%).
25.
26.
27.
3 steps; moreover, it
28.
29.
Napolitano C., Borriello M., Cardullo F., Donati D., Paio A.,
Manfredini S. Tetrahedron. 2010; 66: 5492–5497.
Tymtsunik A. V., Ivon Y. M., Komarov I. V., Grygorenko O. O.
Tetrahedron Asymmetry. 2015; 26.
30.
31.
32.
Mori M., Kubo Y., Ban Y. Tetrahedron Lett. 1985; 26: 1519–1522.
Mori M., Kubo Y., Ban Y. Tetrahedron. 1988; 44: 4321–4330.
Ordóñez M., Cativiela C., Romero-Estudillo I. Tetrahedron:
Asymmetry. 2016; 27: 999–1055.
Acknowledgments
33.
Gajcy K., Lochynski S., Librowski T. Curr Med Chem. 2010; 17:
2338–2347.
Ashton H., Young A. H. J Psychopharmacol. 2003; 17: 174–178.
Crowley P. J., Aspinall I. H., Gillen K., Godfrey C. R. A., Devillers
I. M., Munns G. R., Sageot O., Swanborough J., Worthington P. A.,
Williams J. Chim Int J Chem. 2003; 57: 685–691.
Laroche C., Bertus P., Szymoniak J. Tetrahedron Lett. 2003; 44:
2485–2487.
Zheng J., Li Z., Wu W., Jiang H. Org Lett. 2016; 18: 6232–6235.
Ma J., Chen K., Fu H., Zhang L., Wu W., Jiang H., Zhu S. Org
Lett. 2016; 18: 1322–1325.
Walczak M. A. A., Wipf P. J Am Chem Soc. 2008; 130: 6924–
6925.
Pan X.-H., Jiang P., Jia Z.-H., Xu K., Cao J., Chen C., Shen M.-H.,
Xu H.-D. Tetrahedron. 2015; 71: 5124–5129.
Yang H. Y., Tae J., Seo Y. W., Kim Y. J., Im H. Y., Choi G. D.,
Cho H., Park W.-K., Kwon O. S., Cho Y. S., Ko M., Jang H., Lee
J., Choi K., Kim C.-H., Lee J., Pae A. N. Eur J Med Chem. 2013;
63: 558–569.
Shireman B. T., Dvorak C. A., Rudolph D. A., Bonaventure P.,
Nepomuceno D., Dvorak L., Miller K. L., Lovenberg T. W.,
Carruthers N. I. Bioorg Med Chem Lett. 2008; 18: 2103–2108.
Song S., Zhu S.-F., Pu L.-Y., Zhou Q.-L. Angew Chem Int Ed.
2013; 52: 6072–6075.
The work was funded by Enamine Ltd. The authors thank
Prof. A. Tolmachev for his encouragement and support and Mr.
Andriy Kozytskyi for NMR measurements.
34.
35.
Supplementary data
36.
1
Experimental details, characterization data, and copies of H
37.
38.
and 13C NMR spectrum of products can be found, in the online
39.
40.
41.
References and notes
1.
2.
Blaskovich M. A. T. J Med Chem. 2016; 59: 10807–10836.
Stevenazzi A., Marchini M., Sandrone G., Vergani B., Lattanzio M.
Bioorg Med Chem Lett. 2014; 24: 5349–5356.
3.
4.
Sorochinsky A. E., Aceña J. L., Moriwaki H., Sato T., Soloshonok
V. A. Amino Acids. 2013; 45: 691–718.
Aceña J. L., Sorochinsky A. E., Soloshonok V. Amino Acids. 2014;
46: 2047–2073.
42.
5.
6.
Soloshonok V. A. Curr Org Chem. 2002; 6: 341–364.
Wang Y., Song X., Wang J., Moriwaki H., Soloshonok V. A., Liu
H. Amino Acids. 2017; 49: 1487–1520.
43.
44.
4-tert-Butyl 1-ethyl 4-azabicyclo[5.1.0]octane-1,4-dicarboxylate
(15). To a suspension of NaH (21.2 g, 0.318 mol, 60 % dispersion
in mineral oil) in DMSO (650 mL), S,S,S-trimethylsulfoxonium
iodide (72.9 g, 0.331 mol) was added in small portions and stirred
at rt for 1 h until gas evolution ceased. A solution of 1-tert-butyl
4-ethyl 2,3,6,7-tetrahydro-1H-azepine-1,4-dicarboxylate (9) (34.3
g, 0.127 mol) in DMSO (150 mL) was added dropwise and the
reaction mixture was stirred at 50 °C overnight. The resulting
solution was cooled to rt, poured into ice-cold H2O (1 L) and
extracted with t-BuOMe (3700 mL). The combined organic
extracts were washed with brine (3500 mL), dried over anhydrous
Na2SO4 and evaporated under reduced pressure. The product was
purified by column chromatography (gradient hexane to hexane – t-
7.
Sorochinsky A. E., Aceña J. L., Moriwaki H., Sato T., Soloshonok
V. Amino Acids. 2013; 45: 1017–1033.
8.
9.
Di L. AAPS J. 2015; 17: 134–143.
Vagner J., Qu H., Hruby V. J. Curr Opin Chem Biol. 2008; 12:
292–296.
10.
Fang Z., Song Y., Zhan P., Zhang Q., Liu X. Future Med Chem.
2014; 6: 885–901.
11.
12.
Talele T. T. J. Med. Chem., 2016, 59.
Augeri D. J., Robl J. A., Betebenner D. A., Magnin D. R., Khanna
A., Robertson J. G., Wang A., Simpkins L. M., Taunk P., Huang
Q., Han S.-P., Abboa-Offei B., Cap M., Xin L., Tao L., Tozzo E.,
Welzel G. E., Egan D. M., Marcinkeviciene J., Chang S. Y., Biller
S. A., Kirby M. S., Parker R. A., Hamann L. G. J Med Chem. 2005;
48: 5025–5037.
1
BuOMe (7:3) as eluent). Yield: 19.8 g (55 %); colourless oil. H
NMR(500 MHz, CDCl3): δ 4.14 – 4.06 (m, 2H), 3.98 – 3.78 (m,
2H), 3.10 (s, 1H), 2.96 (s, 1H), 2.77 (dd, J=15.3, 6.4 Hz, 1H), 2.36
(dt, J=14.1, 6.5 Hz, 1H), 1.75 – 1.65 (m, 1H), 1.49 (dd, J=9.2, 4.3
Hz, 1H), 1.43 (s, 9H), 1.37 – 1.26 (m, 2H), 1.23 (t, J=7.1 Hz, 3H),
0.77 (t, J=6.6, 4.3 Hz, 1H). 13C NMR(126 MHz, CDCl3): δ 175.4,
155.1, 79.3, 60.6, 47.6, 47.2, 32.7, 32.4, 28.4, 27.7, 26.9, 24.7, 14.2.
MS (APCI): m/z = 284 [M+H]+. Anal. Calcd. for C15H25NO4: C
63.58; H 8.89; N 4.94. Found: C 63.86; H 8.58; N 5.13.
13.
14.
Magnin D. R., Robl J. A., Sulsky R. B., Augeri D. J., Huang Y.,
Simpkins L. M., Taunk P. C., Betebenner D. A., Robertson J. G.,
Abboa-Offei B. E., Wang A., Cap M., Xin L., Tao L., Sitkoff D. F.,
Malley M. F., Gougoutas J. Z., Khanna A., Huang Q., Han S.-P.,
Parker R. A., Hamann L. G. J Med Chem. 2004; 47: 2587–2598.
Micheli F., Cavanni P., Andreotti D., Arban R., Benedetti R.,
Bertani B., Bettati M., Bettelini L., Bonanomi G., Braggio S.,
Carletti R., Checchia A., Corsi M., Fazzolari E., Fontana S.,
Marchioro C., Merlo-Pich E., Negri M., Oliosi B., Ratti E., Read K.
D., Roscic M., Sartori I., Spada S., Tedesco G., Tarsi L., Terreni S.,
Visentini F., Zocchi A., Zonzini L., Di Fabio R. J Med Chem. 2010;
53: 4989–5001.
15.
16.
17.
Grygorenko O. O. O. Tetrahedron. 2015; 71: 5169–5216.
Trabocchi A., Scarpi D., Guarna A. Amino Acids. 2008; 34: 1–24.
Tymtsunik A. V., Kokhan S. O., Ivon Y. M., Komarov I. V.,
Grygorenko O. O. RSC Adv. 2016; 6: 22737–22748.
Cativiela C., Ordóñez M. Tetrahedron Asymmetry. 2009; 20: 1–63.
Kiss L., Fülöp F. Chem Rev. 2014; 114: 1116–1169.
Barluenga J., Aznar F., Gutiérrez I., García-Granda S., Llorca-
Baragaño M. A. Org Lett. 2002; 4: 4273–4276.
18.
19.
20.
21.
22.
23.
Switzer F. L., Van Halbeek H., Holt E. M., Stammer C. H., Saltveit
M. E. Tetrahedron. 1989; 45: 6091–6100.
Hercouet A., Bessières B., Le Corre M. Tetrahedron: Asymmetry.
1996; 7: 1267–1268.
Hercouet A., Bessières B., Le Corre M., Toupet L. Tetrahedron
Lett. 1996; 37: 4529–4532.