FULL PAPER
then treated with RNAse (200 μgmL–1 in PBS) for 15 min followed
by propidium iodide (1 μgmL–1 in PBS) for 15 min. Finally, the
coverslips were removed and mounted on glass slides, and fluores-
cence images were captured immediately at an excitation of 488 nm
for Zn–GTSCH2 (green) and 543 nm for PI (red). The correspond-
ing brightfield images were also captured.
Curr. Opin. Chem. Biol. 2004, 8, 182–191; e) E. Tomat, S. J.
Lippard, Curr. Opin. Chem. Biol. 2010, 14, 225–230; f) M. D.
Pluth, E. Tomat, S. J. Lippard, Annu. Rev. Biochem. 2011, 80,
333–355; g) K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T.
Nagano, J. Am. Chem. Soc. 2005, 127, 10197–10204; h) M. M.
Henary, Y. Wu, C. J. Fahrni, Chem. Eur. J. 2004, 10, 3015–
3025; i) R. A. Bozym, R. B. Thompson, A. K. Stoddard, C. A.
Fierke, ACS Chem. Biol. 2006, 1, 103–111; j) Y. Hitomi, C. E.
Outten, T. V. O’Halloran, J. Am. Chem. Soc. 2001, 123, 8614–
8615.
a) B. Tang, H. Huang, K. Xu, L. Tong, G. Yang, X. Liu, L. An,
Chem. Commun. 2006, 3609–3611; b) K. Kiyose, H. Kojima, Y.
Urano, T. Nagano, J. Am. Chem. Soc. 2006, 128, 6548–6549.
a) G. K. Walkup, S. C. Burdette, S. J. Lippard, R. Y. Tsien, J.
Am. Chem. Soc. 2000, 122, 5644–5645; b) S. C. Burdette, G. K.
Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard, J. Am. Chem.
Soc. 2001, 123, 7831–7841; c) C. J. Chang, E. M. Nolan, J. Ja-
worski, S. C. Burdette, M. Sheng, S. J. Lippard, Chem. Biol.
2004, 11, 203–210; d) E. M. Nolan, J. W. Ryu, J. Jaworski, R. P.
Feazell, M. Sheng, S. J. Lippard, J. Am. Chem. Soc. 2006, 128,
15517–15528; e) E. M. Nolan, S. J. Lippard, Inorg. Chem. 2004,
43, 8310–8317.
MTT Assay: MTT assay was carried out for GTSCH2 and its zinc
complex on the human breast cancer cell line MCF-7, hepatoma
cancer cell line HepG2, and immortalized keratinocyte cell line
HaCaT to measure cell viability. An appropriate number of cells
was seeded onto a 96-well plate. After 24 h, varying concentrations
of either GTSCH2 or [Zn(GTSC)]3 were added, and the cells were
incubated in a 37 °C incubator for 48 h. After 45 h of incubation,
MTT was added, and the absorbance was read 3 h later on a micro-
plate reader (Molecular devices M5e) at 550 nm. A graph of con-
centration versus percentage cell viability gave the IC50 value, a
concentration at which 50% cell death occurred.
[10]
[11]
Supporting Information (see footnote on the first page of this arti-
cle): Synthetic scheme, Job’s plot, and binding affinity data.
[12]
a) S. L. Sensi, D. Ton-That, J. H. Weiss, A. Rothe, K. R. Gee,
Cell Calcium 2003, 34, 281–284; b) S. L. Sensi, D. Ton-That,
P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, J. H.
Weiss, Proc. Natl. Acad. Sci. USA 2003, 100, 6157–6162; c) P.
Du, S. J. Lippard, Inorg. Chem. 2010, 49, 10753–10755.
a) E. L. Que, D. W. Domaille, C. J. Chang, Chem. Rev. 2008,
108, 1517–1549; b) B. Daniela, J. A. Horowitz, S. J. Lippard, J.
Am. Chem. Soc. 2011, 133, 4101–4114; c) Z. Liu, W. He, Z.
Guo, Chem. Soc. Rev. 2013, 42, 1568–1600.
a) J. E. Kwon, S. Lee, Y. You, K.-H. Baek, K. Ohkubo, J. Cho,
S. Fukuzumi, I. Shin, S. Y. Park, W. Nam, Inorg. Chem. 2012,
51, 8760–8774; b) Z. Xu, J. Yoon, D. R. Spring, Chem. Soc.
Rev. 2010, 39, 1996–2006; c) B. A. Wong, S. Friedle, S. J. Lip-
pard, Inorg. Chem. 2009, 48, 7009–7011.
Acknowledgments
D. P. acknowledges the Council of Scientific and Industrial Re-
search (CSIR), New Delhi, for a senior research fellowship. D. D.
thanks the Indian Institute of Science (IISc) for a centenary post-
doctoral fellowship. K. S. and A. G. S. thank the Department of
Science and Technology (DST), New Delhi, for a research grant.
K. S. also thanks the Department of Science and Technology for a
J. C. Bose fellowship. We would like to thank the Indian Institute
of Science for the imaging facility, the Centre for Imaging Research
in Science & Engineering (IRIS), and Ms. Meenakshi for assisting
us with the the confocal fluorescence microscopy experiments.
[13]
[14]
[15]
a) E. M. Nolan, J. Jaworski, K. I. Okamoto, Y. Hayashi, M.
Sheng, S. J. Lippard, J. Am. Chem. Soc. 2005, 127, 16812–
16823; b) Y. Mikata, A. Yamashita, A. Kawamura, H. Konno,
Y. Miyamoto, S. Tamotsu, Dalton Trans. 2009, 21, 3800–3806;
c) Y. Zhang, X. Guo, W. Si, L. Jia, X. Qian, Org. Lett. 2008,
10, 473–476; d) H.-H. Wang, Q. Gan, X.-J. Wang, L. Xue, S.-
H. Liu, H. Jiang, Org. Lett. 2007, 9, 4995–4998.
[1] a) S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemis-
try, University Science Books, Mill Valley, California, USA,
1994, pp. 139–175; b) C. Andreini, L. Banci, I. Bertini, A. Ros-
ato, J. Proteome Res. 2006, 5, 3173–3178.
[2] a) J. E. Coleman, Curr. Opin. Chem. Biol. 1998, 2, 222–234;
b) J. M. Berg, Y. Shi, Science 1996, 271, 1081–1085; c) T. V.
O’Halloran, Science 1993, 261, 715–724.
[3] a) J. E. Coleman, Annu. Rev. Biochem. 1992, 61, 897–946; b)
B. L. Vallee, K. H. Falchuk, Physiol. Rev. 1993, 73, 79–118; c)
T. Fukada, S. Yamasaki, K. Nishida, M. Murakami, T. Hirano,
J. Biol. Inorg. Chem. 2011, 16, 1123–1134.
[4] C. E. Outten, T. V. O’Halloran, Science 2001, 292, 2488–2492.
[5] a) K. Toth, Annu. Rev. Nutr. 2011, 31, 139–153; b) N. Wijesek-
ara, F. Chimienti, M. B. Wheeler, Diabetes Obes. Metab. 2009,
11, 402–414.
[6] a) R. B. Franklin, L. C. Costello, J. Cell. Biochem. 2009, 106,
750–757; b) A. B. Chausmer, J. Am. Coll. Nutr. 1998, 17, 109–
115; c) C. L. Pao, A. S. Prasad, Nutr. Res. 1988, 8, 889–897; d)
M. P. Cuajungco, G. J. Lees, Neurobiol. Dis. 1997, 4, 137–169;
e) V. Tougu, P. Palumaa, Coord. Chem. Rev. 2012, 256, 2219–
2224.
[16]
[17]
P. Jiang, Z. Guo, Coord. Chem. Rev. 2004, 248, 205–229.
a) X. Peng, F. Song, E. Lu, Y. Wang, W. Zhou, J. Fan, Y. Gao,
J. Am. Chem. Soc. 2005, 127, 4170–4171; b) K. Hanaoka, K.
Kikuchi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc.
2004, 126, 12470–12476.
a) E. Tomat, S. J. Lippard, Inorg. Chem. 2010, 49, 9113–9115;
b) Z. Wang, M. A. Palacios, G. Zyryanov, P. Anzenbacher,
Chem. Eur. J. 2008, 14, 8540–8546.
a) P. Carol, S. Sreejith, A. Ajayaghosh, Chem. Asian J. 2007, 2,
338–348; b) K. Komatsu, Y. Urano, H. Kojima, T. Nagano,
J. Am. Chem. Soc. 2007, 129, 13447–13454; c) C. J. Chang, J.
Jaworski, E. M. Nolan, M. Sheng, S. J. Lippard, Proc. Natl.
Acad. Sci. USA 2004, 101, 1129–1134.
G. J. Brakenhoff, M. Muller, R. I. Ghauharali, J. Microsc.
1996, 183, 140–144.
A. R. Cowley, J. Davis, J. R. Dilworth, P. S. Donnelly, R. Dob-
son, A. Nightingale, J. M. Peach, B. Shore, D. Kerr, L. Seym-
our, Chem. Commun. 2005, 845–847.
G. Buncic, P. S. Donnelly, B. M. Paterson, J. M. White, M.
Zimmermann, Z. Xiao, A. G. Wedd, Inorg. Chem. 2010, 49,
3071–3073.
a) H. Beraldo, D. Gambino, Mini-Rev. Med. Chem. 2004, 4,
31–39; b) B. M. Paterson, P. S. Donnelly, Chem. Soc. Rev. 2011,
40, 3005–3018.
[18]
[19]
[20]
[21]
[7] C. J. Frederickson, G. A. Howell, The Neurobiology of Zinc,
Alan R. Liss, New York, 1984.
[8] a) D. W. Domaille, E. L. Que, C. J. Chang, Nat. Chem. Biol.
2008, 4, 168–175; b) R. McRae, P. Bagchi, S. Sumalekshmy,
C. J. Fahrni, Chem. Rev. 2009, 109, 4780–4827; c) J. W. Licht-
man, J. A. Conchello, Nat. Methods 2005, 2, 910–919.
[9] a) N. C. Lim, H. C. Freake, C. Bruckner, Chem. Eur. J. 2005,
11, 38–49; b) E. M. Nolan, S. J. Lippard, Acc. Chem. Res. 2009,
42, 193–203; c) K. Dhara, S. Karan, J. Ratha, P. Roy, G. Chan-
dra, M. Manassero, B. Mallik, P. Banerjee, Chem. Asian J.
2007, 2, 1091–1100; d) K. Kikuchi, K. Komatsu, T. Nagano,
[22]
[23]
[24]
D. Dayal, D. Palanimuthu, S. V. Shinde, K. Somasundaram,
A. G. Samuelson, J. Biol. Inorg. Chem. 2011, 16, 621–632.
Eur. J. Inorg. Chem. 2013, 3542–3549
3548
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim