Paper
Organic & Biomolecular Chemistry
Synthesis of LY-S-D. To a solution of the terminal alkyne-
functionalized poly(sarcosine)33-(D-Leu-Aib)6-OMe (alkyne-
M. G. Finn and X. Huang, ACS Chem. Biol., 2013, 8, 1253–
1262.
functionalized AB type amphiphile, 31 mg, 10.9 μmol) and 13 10 U. Westerlind, A. Hobel, N. Gaidzik, E. Schmitt and
(11 mg, 12.5 μmol) in anhydrous DMF (1.0 mL) was added Cu H. Kunz, Angew. Chem., Int. Ed., 2008, 47, 7551–7556.
(I)OAc (2 mg, 16.3 μmol). After stirring at 40 °C overnight, the 11 M. Shi, K. A. Kleski, K. R. Trabbic, J. P. Bourgault and
reaction mixture was condensed, and the residue was purified P. R. Andreana, J. Am. Chem. Soc., 2016, 138, 14264–14272.
by Sephadex LH20 column chromatography eluting with 12 A. Kaiser, N. Gaidzik, T. Becker, C. Menge, K. Groh, H. Cai,
MeOH to afford LY-S-D (36 mg, 8.4 μmol, 73%). The degree of
Y. M. Li, B. Gerlitzki, E. Schmitt and H. Kunz, Angew.
Chem., Int. Ed., 2010, 49, 3688–3692.
polymerization of the poly(sarcosine) block was determined as
described above. 1H NMR (400 MHz, MeOH-d4) δ (ppm) 13 M. G. Baek and R. Roy, Bioorg. Med. Chem., 2002, 10, 11–
8.07–7.71 (m, 12H, amide), 5.12 (d, 1H, J = 4.0 Hz, LY-proton),
17.
4.99 (d, 1H, J = 4.0 Hz, LY-proton), 4.57–3.44 (m, 118H, 14 T. C. Shiao and R. Roy, New J. Chem., 2012, 36, 324–339.
LeuCαH, SarCH2, LY-protons, OCH3), 3.1–2.9 (m, 90H, Sar 15 D. Sames, X. T. Chen and S. J. Danishefsky, Nature, 1997,
N–CH3), 1.91 (s, 3H, LY-NHAc), 1.9–1.4 (m, 54H, LeuCH2,
LeuCγH, AibCH3), 1.19–1.16 (m, 6H, LY-fucose-H6), 0.96–0.81 16 H. Cai, Z. Y. Sun, M. S. Chen, Y. F. Zhao, H. Kunz and
(m, 36H, Leu(CH3)2). HRMS (MALDI-TOF MS, super DHB) m/z: Y. M. Li, Angew. Chem., Int. Ed., 2014, 53, 1699–1703.
[M + Na]+, calcd for C199H341N49NaO69 4333.353; found, 17 B. Richichi, B. Thomas, M. Fiore, R. Bosco, H. Qureshi,
389, 587–591.
4332.982.
C. Nativi, O. Renaudet and L. BenMohamed, Angew. Chem.,
Int. Ed., 2014, 53, 11917–11920.
18 Z. Zhou, M. Mondal, G. Liao and Z. Guo, Org. Biomol.
Chem., 2014, 12, 3238–3245.
19 Z. Zhou, G. Liao, S. S. Mandal, S. Suryawanshi and Z. Guo,
Chem. Sci., 2015, 6, 7112–7121.
Conflicts of interest
There are no conflicts to declare.
20 T. Buskas, S. Ingale and G. J. Boons, Angew. Chem., Int. Ed.,
2005, 44, 5985–5988.
21 S. Ingale, M. A. Wolfert, J. Gaekwad, T. Buskas and
G. J. Boons, Nat. Chem. Biol., 2007, 3, 663–667.
22 S. Ingale, M. A. Wolfert, T. Buskas and G. J. Boons,
ChemBioChem, 2009, 10, 455–463.
Acknowledgements
This study was supported by JSPS KAKENHI Grant Number JP
17J09903 for YY.
23 V. Lakshminarayanan, P. Thompson, M. A. Wolfert,
T. Buskas, J. M. Bradley, L. B. Pathangey, C. S. Madsen,
P. A. Cohen, S. J. Gendler and G. J. Boons, Proc. Natl. Acad.
Sci. U. S. A., 2012, 109, 261–266.
24 Y. Yamazaki, N. Watabe, H. Obata, E. Hara, M. Ohmae and
S. Kimura, J. Pept. Sci., 2017, 23, 189–197.
25 D. H. Dube and C. R. Bertozzi, Nat. Rev. Drug Discovery,
2005, 4, 477–488.
26 M. Klinger, H. Farhan, H. Just, H. Drobny, G. Himmler,
H. Loibner, G. C. Mudde, M. Freissmuth and V. Sexl,
Cancer Res., 2004, 64, 1087–1093.
Notes and references
1 M. M. Fuster and J. D. Esko, Nat. Rev. Cancer, 2005, 5, 526–
542.
2 M. M. Wei, Y.-S. Wang and X.-S. Ye, Med. Res. Rev., 2018,
38, 1003–1026.
3 S. J. Danishefsky and J. R. Aleen, Angew. Chem., Int. Ed.,
2000, 39, 836–863.
4 G. Ragupathi, F. Koide, P. O. Livingston, Y. S. Cho, A. Endo,
Q. Wan, M. K. Spassova, S. J. Keding, J. Allen, O. Ouerfelli,
R. M. Wilson and S. J. Danishefsky, J. Am. Chem. Soc., 2006, 27 T. Kanzaki, Y. Horikawa, A. Makino, J. Sugiyama and
128, 2715–2725. S. Kimura, Macromol. Biosci., 2008, 8, 1026–1033.
5 H. Y. Chuang, C. T. Ren, C. A. Chao, C. Y. Wu, 28 M. Ueda, A. Makino, T. Imai, J. Sugiyama and S. Kimura,
S. S. Shivatare, T. J. Cheng, C. Y. Wu and C. H. Wong, J. Am.
Chem. Soc., 2013, 135, 11140–11150.
6 Y. L. Huang, J. T. Hung, S. K. Cheung, H. Y. Lee, K. C. Chu,
Chem. Commun., 2011, 47, 3204–3206.
29 V. Filipe, A. Hawe and W. Jiskoot, Pharm. Res., 2010, 27,
796–810.
S. T. Li, Y. C. Lin, C. T. Ren, T. J. Cheng, T. L. Hsu, A. L. Yu, 30 A. Makino, E. Hara, I. Hara, E. Ozeki and S. Kimura,
C. Y. Wu and C. H. Wong, Proc. Natl. Acad. Sci. U. S. A.,
2013, 110, 2517–2522.
7 S. J. Danishefsky, Y. K. Shue, M. N. Chang and C. H. Wong,
Acc. Chem. Res., 2015, 48, 643–652.
Langmuir, 2014, 30, 669–674.
31 C. J. Kim, S. Kurauchi, T. Uebayashi, A. Fujisaki and
S. Kimura, Bull. Chem. Soc. Jpn., 2017, 90, 568–573.
32 E. Hara, A. Makino, K. Kurihara, F. Yamamoto, E. Ozeki
and S. Kimura, Int. Immunopharmacol., 2014, 14, 261–266.
8 E. Kaltgrad, S. Sen Gupta, S. Punna, C. Y. Huang, A. Chang,
C. H. Wong, M. G. Finn and O. Blixt, ChemBioChem, 2007, 33 C. J. Kim, E. Hara, A. Shimizu, M. Sugai and S. Kimura,
8, 1455–1462. J. Pharm. Sci., 2015, 104, 1839–1847.
9 Z. Yin, M. Comellas-Aragones, S. Chowdhury, P. Bentley, 34 E. Hara, M. Ueda, C. J. Kim, A. Makino, I. Hara, E. Ozeki
K. Kaczanowska, L. Benmohamed, J. C. Gildersleeve,
and S. Kimura, J. Pept. Sci., 2014, 20, 570–577.
8104 | Org. Biomol. Chem., 2018, 16, 8095–8105
This journal is © The Royal Society of Chemistry 2018