10.1002/cmdc.201700720
ChemMedChem
COMMUNICATION
aromatic residue induces a change of the relative orientation
interactions with positively charged aromatic residues favours a
parallel orientation of the aromatic rings, which enhances the
strength of the resulting azinium-π (cation-π) interactions.
Understanding the ultimate conditions to design a good ligand for
ScGas2 we obtained a first low micromolar inhibitor for AfGel4
demonstrating the validity of the approach. These studies will
open the door to the design of more potent inhibitors of AfGel4
that could be useful as a platform to discover antifungal
therapeutic agents.
between the aromatic residue and Tyr244. Indeed, when the
positive charge is permanent (at physiological pH) as in the case
of aziniums 11 and 12, only unfolded conformations with a parallel
orientation to Tyr244 are found in the X-ray structure. The parallel
orientation allows more efficient π,π-interactions with Tyr244 in
comparison with CH-π interactions observed in compounds 6-9.
The existence of these interactions was confirmed through a
topological NCI analysis[18] that showed the expected surfaces for
such a sort of non-covalent interactions (Figure 5).
Acknowledgements
This work was supported by Spanish MINECO Contracts
(CTQ2016-76155-R to P.M., and BFU2016-75633-P to R.H-G.),
and an MRC Programme Grant (M004139) to D.M.F.v.A. We also
acknowledge the Government of Aragón (Spain) (Bioorganic
Chemistry group E-10 and Protein Targets group B-89) for
financial support. We acknowledge the Institute of
Biocomputation and Physics of Complex Systems (BIFI) at the
University of Zaragoza (Spain) for computer time at clusters
Terminus and Memento. We thank synchrotron radiation sources
DLS (Oxford), and in particular beamline I02 (experiment number
MX10121-11), and ALBA (Barcelona), and in particular XALOC
beamline. European Commission is gratefully acknowledged
(BioStruct-X
grant
agreement
N°283570
and
BIOSTRUCTX_5186).
Figure 4. Molecular dynamics of 10 showing unfolding after 2.5 ns and its
maintenance up to 30 ns (extension to 100 ns do not show any change). Starting
structures: red trace: protonated folded; green trace: neutral folded; black trace:
protonated unfolded; blue trace: neutral unfolded
Keywords: transglycosylases • Aspergillus fumigatus •
oligosaccharides • glycomimetics • carbohydrates
[1]
I. V. Ene, L. A. Walker, M. Schiavone, K. K. Lee, H. Martin-Yken, E.
Dague, N. A. Gow, C. A. Munro, A. J. Brown, mBio 2015, 6, e00986.
J. P. Latge, Mol. Microbiol. 2007, 66, 279-290.
[2]
[3]
(a) I. Mouyna, L. Hartl, J. P. Latge, Frontiers in microbiology 2013, 4, 81.
(b) E. Cabib, J. Arroyo, Nat. Rev. Microbiol. 2013, 11, 648-655.
A. Gastebois, T. Fontaine, J. P. Latge, I. Mouyna, Eukaryot. Cell 2010,
9, 1294-1298.
[4]
[5]
(a) F. Sillo, C. Gissi, D. Chignoli, E. Ragni, L. Popolo, R. Balestrini,
Fungal Genet. Biol. 2013, 53, 10-21. (b) W. Zhao, C. Li, J. Liang, S. Sun,
Glycobiology 2014, 24, 418-427.
[6]
(a) E. Ragni, A. Coluccio, E. Rolli, J. M. Rodriguez-Pena, G. Colasante,
J. Arroyo, A. M. Neiman, L. Popolo, Eukaryot. Cell 2007, 6, 302-316. (b)
E. Ragni, J. Calderon, U. Fascio, M. Sipiczki, W. A. Fonzi, L. Popolo,
Fungal Genet. Biol. 2011, 48, 793-805. (c) M. de Medina-Redondo, Y.
Arnaiz-Pita, C. Clavaud, T. Fontaine, F. del Rey, J. P. Latge, C. R.
Vazquez de Aldana, PLoS One 2010, 5, e14046.
Figure 5. NCI analysis showing characteristic surfaces for T-shape (left,
compound 7) and parallel (right, compound 12) oriented ligands corresponding
to CH-π and azinium-π (cation-π) interactions, respectively.
[7]
R. Hurtado-Guerrero, A. W. Schuettelkopf, I. Mouyna, A. F. M. Ibrahim,
S. Shepherd, T. Fontaine, J.-P. Latge, D. M. F. van Aalten, J. Biol. Chem.
2009, 284, 8461-8469.
[8]
[9]
L. Raich, V. Borodkin, W. Fang, J. Castro-Lopez, D. M. F. van Aalten, R.
Hurtado-Guerrero, C. Rovira, J. Am. Chem. Soc. 2016, 138, 3325-3332.
I. Delso, J. Valero-González, E. Marca, T. Tejero, R. Hurtado-Guerrero,
P. Merino, Chem. Biol. Drug Design 2016, 87, 163-170.
As a final verification of our approach, we conducted inhibition
studies of the best ligand 12 on AfGel4.[19] The experiments
indicated that this compound was capable of inhibiting AfGel4 with
an IC50 value of 42.0 M (See SI), validating our approach of using
ScGas2 as a model for the design of glycomimetics against
AfGel4.
[10] J. L. Asensio, A. Arda, F. J. Canada, J. Jimenez-Barbero, Acc. Chem.
Res. 2013, 46, 946-954.
[11] M. Kumar, P. V. Balaji, J. Mol. Model. 2014, 20, 2136.
[12] C. D. Hein, X. M. Liu, D. Wang, Pharm. Res. 2008, 25, 2216-2230.
[13] V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen,
Chem. Rev. 2016, 116, 3086-3240.
In summary, after a rational design of ligands for AfGel4 using
ScGas2 as a model, we have obtained quinolinium derivative 12
showing a Kd of 1.50 ± 0.01 µM and inhibitory properties against
AfGel4 (IC50 = 42 µM). During the design, π,π-interactions with
Tyr307 and Tyr244 were discovered to be the driving force for
achieving optimal binding. In particular, in the case of Tyr244,
[14] T. Tejero, S. García-Viñuales, I. Delso, P. Merino, Synthesis 2016, 48,
3339-3351.
[15] C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191-2201.
This article is protected by copyright. All rights reserved.