ChemComm
Communication
and crystallization upon the grinding–annealing (or fuming) Notes and references
process. ENPOMe is proven to be CIEE-active because the
1
(a) T. Mutai, H. Satou and K. Araki, Nat. Mater., 2005, 4, 685;
(b) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am. Chem.
Soc., 2007, 129, 1520; (c) Y. Sagara and T. Kato, Nat. Chem., 2009,
crystallinity and fluorescence efficiency of the B-form are higher
than those of the G-form. Although several luminophores have
been reported to exhibit morphology-dependent fluorescence,
compounds showing large differences in fluorescence efficiency
with the CIEE effect, as well as the TPF emission color, have not
yet been reported. SPF and TPF spectra of ENPOMe in B-form
1, 605; (d) Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu
and J. Xu, Chem. Soc. Rev., 2012, 41, 3878.
2 (a) R. Jakubiak, C. J. Collison, W. Wan, L. J. Rothberg and
B. R. Hsieh, J. Phys. Chem. A, 1999, 103, 2394; (b) S. W. Thomas,
G. D. Joly and T. M. Swager, Chem. Rev., 2007, 107, 1339.
3
J. Luo, Z. Xie, J. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan,
and G-form are shown in Fig. S9 (ESI†). The lmax of SPF in B
and G is located at 469 and 512 nm, respectively, under
70 nm excitation by a xenon lamp. This finding agrees well
with TPF. The good match between single- and two-photon
excitation fluorescence suggests that the emission results from
the same excited state without regard to different excitation
modes. The reversibility between B-forms and G-forms in SPF is
similar to that in TPF (Fig. S10, ESI†), demonstrating that
ENPOMe can be switched by both SPF and TPF.
1
Y. Liu, D. Zhu and B. Tang, Chem. Commun., 2001, 1740.
4 B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem. Soc.,
002, 124, 14410.
(a) Y. Hong, J. Lam and B. Tang, Chem. Soc. Rev., 2011, 40, 5361;
b) Z. Yang, Z. Chi, T. Yu, X. Zhang, M. Chen, B. Xu, S. Liu, Y. Zhang
1
2
3
5
(
and J. Xu, J. Mater. Chem., 2009, 19, 5541; (c) X. Zhang, Z. Chi, H. Li,
B. Xu, X. Li, S. Liu, Y. Zhang and J. Xu, J. Mater. Chem., 2011,
21, 1788; (d) B. Xu, Z. Chi, Z. Yang, J. Chen, S. Deng, H. Li, X. Li,
Y. Zhang, N. Xu and J. Xu, J. Mater. Chem., 2010, 20, 4135; (e) H. Li,
Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu, Y. Zhang and J. Xu,
J. Mater. Chem., 2010, 20, 6103; ( f ) Z. Yang, Z. Chi, B. Xu, H. Li,
X. Zhang, X. Li, S. Liu, Y. Zhang and J. Xu, J. Mater. Chem., 2010,
Fig. S11 (ESI†) shows the molecular packing structures of the
ENPOMe single crystal (four molecules per unit cell; crystal data
summarized in Table S1, ESI†) demonstrated by single crystal X-ray
diffraction. ENPOMe crystallizes layer-by-layer when assisted by
weak C–Hꢀꢀꢀp interaction. The molecules in the crystal are
arranged in slip-stack order along the long c-axis with a pitch angle
of 71.41. Molecules form antiparallel coupling in the same layer,
and establish efficient tail-to-tail interaction with adjacent mole-
cules by C–HꢀꢀꢀN and C–HꢀꢀꢀO hydrogen bonds. These bonds are
more robust than the C–Hꢀꢀꢀp interactions of the interlayer. Thus,
the molecules will first slip along the c-axis when triggered by an
external pressure, and then the crystal will crack. Furthermore,
numerous cavities are found in each layer, indicating that ENPOMe
affords loose-packing patterns in its crystals. Geometry of isolated
free molecules of ENPOMe in the ground state was obtained by
simulation based on B3LYP/6-31G(d) using Gaussian 03W (Fig. S12
and Table S2, ESI†) to validate the piezofluorochromism
mechanism. The dihedral angles of A–D and D–F pairs in the
simulated molecule are 75.21 and 5.71, respectively, which are 5.31
and 8.71 lower than those in the crystal. Thus, the twist stress of the
molecules in the crystals is greater, and readily released when
triggered by external pressure, which leads to the planarization of
the molecular conformation, an extension of molecular conjuga-
tion, and a bathochromic shift of both SPF and TPF spectra.
In summary, we have easily synthesized and fully character-
ized a novel AIE- and CIEE-active luminophore constituted by
tetraphenylethene and acrylonitrile (ENPOMe) with high
2
0, 7352; (g) J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye and W. Tian,
J. Phys. Chem. C, 2009, 113, 9892.
(a) Y. Dong, J. Lam, Z. Li, A. Qin, H. Tong, Y. Dong, X. Feng and
B. Tang, J. Inorg. Organomet. Polym. Mater., 2005, 15, 287;
6
(
b) S. J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M. G. Choi,
D. Kim and S. Y. Park, J. Am. Chem. Soc., 2010, 132, 13675; (c) B. Xu,
Z. Chi, J. Zhang, X. Zhang, H. Li, X. Li, S. Liu, Y. Zhang and J. Xu,
Chem.–Asian J., 2011, 6, 1470; (d) X. Zhang, Z. Chi, J. Zhang, H. Li,
B. Xu, X. Li, S. Liu, Y. Zhang and J. Xu, J. Phys. Chem. B, 2011,
115, 7606; (e) H. Li, X. Zhang, Z. Chi, B. Xu, W. Zhou, S. Liu, Y. Zhang
and J. Xu, Org. Lett., 2011, 13, 556; ( f ) B. Xu, Z. Chi, X. Zhang, H. Li,
C. Chen, S. Liu, Y. Zhang and J. Xu, Chem. Commun., 2011, 11080;
(
g) X. Zhang, Z. Chi, H. Li, B. Xu, X. Li, W. Zhou, S. Liu, Y. Zhang and
J. Xu, Chem.–Asian J., 2011, 6, 808; (h) X. Luo, J. Li, C. Li, L. Heng,
Y. Dong, Z. Liu, Z. Bo and B. Tang, Adv. Mater., 2011, 23, 3261;
(
i) Y. Dong, B. Xu, J. Zhang, X. Tan, L. Wang, J. Chen, H. Lv, S. Wen,
B. Li, L. Ye, B. Zou and W. Tian, Angew. Chem., In. Ed., 2012,
1, 10782.
5
7 (a) J. H. Lee, C. S. Lim, Y. S. Tian, J. H. Han and B. R. Cho, J. Am.
Chem. Soc., 2010, 132, 1216; (b) T. R. Krishna, M. Parent, M. H.
V. Werts, L. Moreaux, S. Gmouh, S. Charpak, A. M. Caminade,
J. P. Majoral and M. Blanchard-Desce, Angew. Chem., Int. Ed., 2006,
45, 4645; (c) X. Wang, X. Tian, Q. Zhang, P. Sun, J. Wu, H. Zhou,
B. Jin, J. Yang, S. Zhang, C. Wang, X. Tao, M. Jiang and Y. Tian,
Chem. Mater., 2012, 24, 954.
(a) S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne,
M. W. Day, J.-L. Br ´e das, S. R. Marder and J. W. Perry, J. Phys. Chem.
A, 2002, 106, 11470; (b) Y. Jiang, Y. Wang, J. Hua, J. Tang, B. Li,
S. Qian and H. Tian, Chem. Commun., 2010, 46, 4689.
8
9
(a) B. K. An, D. S. Lee, J. S. Lee, Y. S. Park, H. S. Song and S. Y. Park,
J. Am. Chem. Soc., 2004, 126, 10232; (b) J. W. Chung, S. J. Yoon,
S. J. Lim, B. K. An and S. Y. Park, Angew. Chem., Int. Ed., 2009,
4
8, 7030.
1
1
0 (a) H. Tong, Y. Hong, Y. Dong, M. Haussler, J. Lam, Z. Li, Z. Guo,
Z. Guo and B. Tang, Chem. Commun., 2006, 3705; (b) W. Yuan, P. Lu,
S. Chen, J. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Tang, Adv.
Mater., 2010, 22, 2159; (c) W. Wang, T. Lin, M. Wang, T. Liu, L. Ren,
D. Chen and S. Huang, J. Phys. Chem. B, 2010, 114, 5983.
1 (a) Y. Wu, X. Shen, S. Dai, Y. Xu, F. Chen, C. Lin, T. Xu and Q. Nie,
J. Phys. Chem. C, 2011, 115, 25040; (b) Y. Song, Y. Huang, L. Zhang,
Y. Zheng, N. Guo and H. You, RSC Adv., 2012, 2, 4777.
2 G. He, L. Tan, Q. Zheng and P. Prasad, Chem. Rev., 2008, 108, 1245.
3 M. J. Frisch, G. W. Trucks and H. B. Schlegel, et al., Gaussian 03.,
Revision D.01., Gaussian, Inc., Wallingford, CT, 2004.
4 (a) V. Hrob ´a rikov ´a , P. Hrob ´a rik, P. Gajdo ˇs , I. Fitilis, M. Fakis,
P. Persephonis and P. Zahradn ´ı k, J. Org. Chem., 2010, 75, 3053;
fluorescence (F of up to 0.85). ENPOMe has an exceptionally
F
large TPA cross section of 5548 GM. The as-synthesized sample
exhibits striking multi-stimuli-responsive SPF and TPF switching
with excellent reversibility in the solid state. The unique reversibility
of TPF makes ENPOMe a promising material for 3-D optical data
storage or sensing.
The authors gratefully acknowledge the financial support
from the NSF of China (51173210, 51073177), the Fundamental
Research Funds for the Central Universities and NSF of
Guangdong (S2011020001190).
1
1
1
(
b) B. Wang, Y. Wang, J. Hua, Y. Jiang, J. Huang, S. Qian and H. Tian,
Chem.–Eur. J., 2011, 17, 2647.
This journal is c The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 273--275 275