3
therefore the formation of 12; the nucleophilic attack of the
bromide at the sulfur atom is another possibility for the
conversion of 14 into 12. Importantly, the solid-state structure of
cyclic ether 12 corroborates the spectroscopically deduced trans
relationship of the bromide and ether oxygen groups; in fact,
norbornenes 17 and 19 (Scheme 2). With more nucleophilic
halogens (I>Br>Cl),21 embedded in the bicyclic reactants, we
expected a more effective anchimeric assistance along the series
21719.16 Indeed, in the case of 17 there was a sole formation
of tetrabromo product 18 without any competing radical
bromination at 78 ºC (Scheme 2); note that compound 18 was
found to be unstable at 150 ºC in nonane (15 min), and possibly
giving elimination products that were difficult to distinguish with
1H NMR spectroscopy. Interestingly, compound 19 would in the
presence of bromine give a complex mixture of products yet
upon the addition of radical quencher BHT there was no reaction
observed. Currently, we have no additional experimental data to
provide an explanation for this observation. With phenylselenyl
bromide, the electrophilic selenylation of 2 in CH2Cl2 gave rise to
two products 21 and 22 with, presumably, both arising from
common seleniranium ion 20 (Scheme 2).22 In particular, we
postulate that 21 forms by the anchimeric assistance of the
adjacent chlorine atom (pathway a, Scheme 2) setting the trans
stereochemistry at carbons C-2 and C-3 of the norbornane and
allowing the positional exchange of two different halogen atoms.
We also hypothesize that in consequence of a greater persistency
of seleniranium ion 20 (Scheme 2), than bromonium 5 (Scheme
1A),23 the classical anti electrophilic addition (AdE2) of PhSeBr
took place with the dominant formation of 22; the ratio of 21:22
was determined with 1H NMR spectroscopy to be 13:87 (Scheme
2). That is to say, the more stable and bridged cationic
intermediate 20 is sufficiently persistent to allow the nucleophilic
attack by not only neighboring CH2Cl group but also the external
bromide anion. At last, the electrophilic sulfenylation24 of 17
with phenylsulfenyl chloride gave the expected products 23 and
24 by mechanism akin to the electrophilic selenylation.25
stereoselective
syntheses
of
tetrahydrofurans18
and
halogenolactons19 by 5-exo-trig cyclizations have already been
reported and discussed by others.20 Finally, thioether 15 was in
the same manner converted into cyclic sulfonium salt 16 (Figure
2C), which was stable enough for isolation and full
characterization at ambient conditions.
To additionally examine the scope of the procedure, we
studied the stereoselective bromination of dibromo- and dioiodo-
Br
Br
Br2
t-BuOK
THF
80%
Br
Br
CH2Cl2
98%
Br
Br
18
9
17
Br
Br2 / BHT
CH2Cl2
no product
PhSe
I
19
I
PhSe
(a)
13
Cl
Br
Cl
Br
Cl
Cl
21
PhSe
PhSeBr
CH3CN
92%
Cl
Cl
(b)
Br
Cl
Cl
2
PhSe
(a)
20
87
(b)
Cl
Cl
Br
22
PhS
Br
(a)
31
Br
Cl
23
PhSCl
CH2Cl2
85%
Br
Br
17
In conclusion, we discovered a synthetic method for obtaining
polyhalogenated derivatives of norbornane via anchimeric
assistance of halogens. The procedure is straightforward, high
yielding, regio- and stereoselective with potential to be extended
to a variety of bicyclic or cyclic systems and thereby facilitating
the synthesis of natural products and other useful materials.14,26
PhS
Cl
69
Br
Br
24
(b)
Scheme 2. The anchimeric assistance of either chlorine or bromine
atoms affects the outcome of the examined electrophilic addition
reactions in a predictable manner. The bromination of 19 at 78 ºC
with 3,5-di-tert-4-butylhydroxytoluene (BHT, 3 mol equiv.) did
not show any product (1H NMR spectroscopy).
4, 1329; (c) Bolzan, A.; Bortoluzzi, M.; Borsato, G.; Fabbro, C.; Dastan, A.;
De Lucchi, O.; Fabris, F. Helv. Chim. Acta 2015, 98, 1067.
(8) Maslak, V.; Yan, Z.; Xia, S.; Gallucci, J.; Hadad, C. M.; Badjic, J. D. J.
Am. Chem. Soc. 2006, 128, 5887.
(9) Tutar, A.; Taskesenligil, Y.; Cakmak, O.; Abbasoglu, R.; Balci, M. J.
Org. Chem. 1996, 61, 8297.
(10) Marshall, D. R.; Reynolds-Warnhoff, P.; Warnhoff, E. W.; Robinson, J.
R. Can. J. Chem. 1971, 49, 885.
(11) Gueltekin, D. D.; Taskesenligil, Y.; Dastan, A.; Balci, M. Tetrahedron
2008, 64, 4377.
(12) Scholz, F.; Himmel, D.; Heinemann, F. W.; Schleyer, P. v. R.; Meyer,
K.; Krossing, I. Science 2013, 341, 62.
(13) Capon, B. Quart. Rev. 1964, 18, 45.
(14) (a) Chung, W.-j.; Vanderwal, C. D. Angew. Chem., Int. Ed. 2016, 55,
4396; (b) Xia, W. J.; Li, D. R.; Shi, L.; Tu, Y. Q. Tetrahedron Lett. 2002, 43,
627.
Acknowledgments
This work was financially supported with funds obtained from
the U.S. National Science Foundation under CHE1305179. We
would like to thank S. Jing and Prof. T. V. RajanBabu of the
Ohio State University for assistance with gas chromatography.
References and notes
(15) Brown, R. S. Acc. Chem. Res. 1997, 30, 131.
(16) Shellhamer, D. F.; Davenport, K. J.; Forberg, H. K.; Herrick, M. P.;
Jones, R. N.; Rodriguez, S. J.; Sanabria, S.; Trager, N. N.; Weiss, R. J.;
Heasley, V. L.; Boatz, J. A. J. Org. Chem. 2008, 73, 4532.
(17) Peterson, P. E. Accounts Chem. Res. 1971, 4, 407.
(18) Rychnovsky, S. D.; Bartlett, P. A. J. Am. Chem. Soc. 1981, 103, 3963.
(19) Srebnik, M.; Mechoulam, R. J. Chem. Soc., Chem. Commun. 1984,
1070.
(1) (a) Hermann, K.; Ruan, Y.; Hardin, A. M.; Hadad, C. M.; Badjic, J. D.
Chem. Soc. Rev. 2015, 44, 500; (b) Rieth, S.; Hermann, K.; Wang, B.-Y.;
Badjic, J. D. Chem. Soc. Rev. 2011, 40, 1609; (c) Pratumyot, Y.; Chen, S.;
Hu, L.; Polen, S. M.; Hadad, C. M.; Badjic, J. D. Org. Lett. 2016, 18, 4238.
(2) Ruan, Y.; Chen, S.; Brown, J. D.; Hadad, C. M.; Badjic, J. D. Org. Lett.
2015, 17, 852.
(20) (a) Bedford, S. B.; Bell, K. E.; Bennett, F.; Hayes, C. J.; Knight, D. W.;
Shaw, D. E. J. Chem. Soc., Perkin Trans. 1 1999, 2143; (b) Barks, J. M.;
Weingarten, G. G.; Knight, D. W. Perkin 1 2000, 3469; (c) Knight, D. W.
Prog. Heterocycl. Chem. 2002, 14, 19; (d) Nichols, C. J. Synth. Commun.
2003, 33, 2167; (e) Ranganathan, S.; Muraleedharan, K. M.; Vaish, N. K.;
Jayaraman, N. Tetrahedron 2004, 60, 5273.
(3) Chen, S.; Polen, S. M.; Wang, L.; Yamasaki, M.; Hadad, C. M.; Badjic, J.
D. J. Am. Chem. Soc. 2016, 138, 11312.
(4) Chen, S.; Ruan, Y.; Brown, J. D.; Hadad, C. M.; Badjic, J. D. J. Am.
Chem. Soc. 2014, 136, 17337.
(5) Zhiquan, L.; Polen, S.; Hadad, C. M.; RajanBabu, T. V.; Badjic, J. D. J.
Am. Chem. Soc. 2016, 138, 8253.
(21) Winstein, S.; Grunwald, E. J. Am. Chem. Soc. 1948, 70, 828.
(22) Garratt, D. G.; Kabo, A. Can. J. Chem. 1980, 58, 1030.
(23) Carey, F. A.; Sundberg, R. J.; Editors Advanced Organic Chemistry,
Part A: Structure and Mechanisms, Fifth Edition, 2007.
(24) (a) Zefirov, N. S.; Sadovaya, N. K.; Novgorodtseva, L. A.; Bodrikov, I.
V. Tetrahedron 1978, 34, 1373; (b) Peluso, P.; Greco, C.; De Lucchi, O.;
Cossu, S. Eur. J. Org. Chem. 2002, 4024.
(6) (a) Ruan, Y.; Dalkilic, E.; Peterson, P. W.; Pandit, A.; Dastan, A.; Brown,
J. D.; Polen, S. M.; Hadad, C. M.; Badjic, J. D. Chem. Eur. J. 2014, 20, 4251;
(b) Ruan, Y.; Taha, H. A.; Yoder, R. J.; Maslak, V.; Hadad, C. M.; Badjic, J.
D. J. Phys. Chem. B 2013, 117, 3240.
(7) (a) Zonta, C.; Cossu, S.; De Lucchi, O. Eur. J. Org. Chem. 2000, 1965;
(b) Reza, A. F. G. M.; Higashibayashi, S.; Sakurai, H. Chem. Asian J. 2009,