J. Am. Chem. Soc. 1999, 121, 8953-8954
Scheme 1. The Formation and Chemistry of
8953
A Polyoxometalate Transfer Reagent: Synthesis,
6
a
2 2
[(LNbO) ZrCp ] -
Structure, and Reactivity of Zirconocene
Polyoxometalate [(PNbW11O40)2ZrCp2]6-
†
‡
,§
Emil V. Radkov, Victor G. Young Jr., and Robert H. Beer*
Departments of Chemistry
Fordham UniVersity, Bronx, New York 10458
Columbia UniVersity, New York, New York 10027
UniVersity of Minnesota, Minneapolis, Minnesota 55455
ReceiVed February 17, 1999
1
The rising popularity of polyoxometalates in catalysis, materi-
als, and biological studies has increased efforts to both modify
their properties and prepare new compounds.1 To date, synthetic
,2
3
methods that functionalize complete, intact polyoxometalates
4
have relied largely on the use of electrophilic organic or
organometallic species5 to bind to polyoxometalate surface
oxygen atoms. Although studies have investigated many aspects
of their reactivity, functionalized complete polyoxometalates have
not themselves been used generally as reagents to prepare new
-7
8
derivatives. Polyoxometalate supported cyclopentadienyl com-
plexes5 are potential candidates for such a reagent. Among this
derivative class, the monocyclopentadienyl organometallic adducts
of complete polyoxometalates have been prepared and thoroughly
,6
6
studied. Far less, however, is known about the biscyclopentadi-
enyl adducts. In this communication, we describe the synthesis
9
a
The lacunary Keggin ion, L ) {R-PW O }7-, is represented by a
11
39
of the first polyoxometalate supported biscyclopentadienyl com-
curvilinear shape.
6-
2 2
plex of Group 4, [(PW11O39NbO) ZrCp ] , and use this complex
to demonstrate the transfer of the complete polyoxometalate
†
Columbia University.
[PW11O
39NbO]4 to several molecular species.
-
‡
University of Minnesota.
Fordham University.
§
Previous syntheses of polyoxometalate supported organome-
tallic complexes have taken advantage of the enhanced Lewis
basicity of oxygen atoms bound to Group 5 metals in mixed-
(
1) (a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-
Verlag: New York, 1983. (b) Pope, M. T.; M u¨ ller, A. Angew. Chem., Intl.
Ed. Engl. 1991, 30, 34. (c) Polyoxometalates: from Platonic Solids to Retro-
Viral ActiVity; Pope, M. T., M u¨ ller, A., Eds.; Kluwer Academic Publishers:
Dodrecht, The Netherlands, 1994. (d) Thematic issue on polyoxometalates
metal polyoxometalates to coordinate to cationic organometallic
2
fragments. Using this synthetic strategy, the reaction of Cp
2
Zr-
(
Hill, C. L., Ed.): Chem. ReV. 1998, 98, 1-390.
2) (a) Day, W. G.; Klemperer, Science 1985, 228, 533. (b) Gouzerh, P.;
Proust, A. Chem. ReV. 1998, 98, 77 and references therein.
-
-
(
(OTf)
2
‚THF (Cp ) C
niobium-substituted polytungstate (n-Bu
5
H
5
, OTf ) O
3
SCF
N)
39} ) in acetonitrile forms (n-Bu
3
) with 2 equiv of the
1
0
4
4
[LNbO] (where L
N) [(LNbO)
When the reaction is
1
b
(
3) Complete (plenary) polyoxometalate derivatives are defined herein
7-
)
R-{PW11
O
4
6
2
-
as being Group 5 and Group 6 isopoly- or heteropolyoxometalates that bind
to molecular compounds or fragments via surface oxygen atoms. This definition
excludes syntheses that involve oxygen ligand substitution reactions or add
1
1,12
ZrCp
2
] in 91% yield (eq 1, Scheme 1).
4-
carried out with [LNb*O] in which the terminal ONb oxygen
n+
metal fragments into vacancies created by removing {MO} units.
(
17
atom is enriched selectively with H *O (*O ) O, 10%
2
4) (a) Knoth, W. H.; Harlow, R. L. J. Am. Chem. Soc. 1981, 103, 4265.
enriched),13 quantitative retention of the isotopic label in (n-
(
1
b) Siedle, A. R.; Lyon, P. A.; Hunt, S. L.; Skarjune, A. P. J. Am. Chem. Soc.
986, 108, 6430. (c) Day, V. W.; Klemperer, W. G.; Schwartz, C. J. Am.
Chem. Soc. 1987, 109, 6030. (d) Ma, L.; Liu, S.; Zubieta, J. Inorg. Chem.
989, 28, 175.
5) (a) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R.
4 6 2 2
Bu N) [(LNbO) ZrCp
] is observed by 17O NMR spectroscopy
17
6-
2 2
asshownineq1.The ONMRchemicalshiftof[(LNb*O) ZrCp ]
1
displays an upfield chemical shift to 554 ppm compared to 831
(
4- 13
Inorg. Chem. 1985, 24, 44. (b) Besecker, C. J.; Klemperer, W. G.; Day, V.
W. J. Am. Chem. Soc. 1982, 104, 6158. (c) Day, V. W.; Klemperer, W. G.;
Main, D. J. Inorg. Chem. 1990, 29, 2345. (d) Klemperer, W. G.; Main, D. J.
Inorg. Chem. 1990, 29, 2355. (e) Day, V. W.; Eberspacher, T. A.; Klemperer,
W. G.; Planalp, R. P.; Schiller, P. W.; Yagasaki, A.; Zhong, B. Inorg. Chem.
ppm for [LNbO] , consistent with the presence of a Nb-O-
2a,12b,14
Zr oxygen bridge.
O NMR chemical shifts reported for related oxo-bridged niobium
This resonance is in the range of the
17
1
7
1
1
993, 32, 1629. (f) Lin, Y.; Nomiya, K.; Finke, R. G. Inorg. Chem. 1995, 34,
67. (g) Attanasio, D.; Bachechi, F.; Suber, L. J. Chem. Soc., Dalton Trans.
993, 2373. (h) Abe, M.; Isobe, K.; Kida, K.; Yagasaki, A. Inorg. Chem.
996, 35, 5114. (i) Nagata, T.; Pohl, M.; Weiner, H.; Finke, R. G. Inorg.
(10) Radkov, E.; Beer, R. H. Polyhedron 1995, 14, 2139.
(11) Synthesis and characterization details are given in Supporting Informa-
tion.
(12) Related Group 4 metallocene-metal oxoanion conjugates have been
2
-
Chem. 1997, 36, 1366.
6) (a) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R.
prepared by halide displacement reactions: (a) Cp
2
TiCl
2
with [WO
4
]
or
2
-
(
[Mo O ] : Carofiglioi, T.; Floriani, C.; Rosi, M.; Chiesi-Villa, A.; Rizzoli,
2 7
-
J. Am. Chem. Soc. 1984, 106, 4125. (b) Chae, H. K.; Klemperer, W. G.; Day,
V. W. Inorg. Chem. 1989, 28, 1483. (c) Hayashi, Y.; Ozawa, Y.; Isobe, K.
Inorg. Chem. 1991, 30, 1025. (d) Rapko, B. M.; Pohl, M.; Finke, R. G. Inorg.
Chem. 1994, 33, 3625 and references therein. (e) Pohl, M.; Lin, Y.; Weakley,
T. J. R.; Nomiya, K.; Kaneko, M.; Werner, H.; Finke, R. G. Inorg. Chem.
C Inorg. Chem. 1997, 30, 33245. (b) Cp
2
M′Cl
2
(M′ ) Ti, Zr) with Cp*M(O)
3
(M ) Mo, W.; Cp* ) C Me ): Rau, M. S.; Kretz, C. M.; Geoffroy, G. L.
5 5
Organometallics 1994, 13, 1624.
(13) Radkov, E.; Lu, Y.-J.; Beer, R. H. Inorg. Chem. 1996, 35, 551.
17
(14) The O NMR chemical shift is sensitive to the electronic environment
around the oxygen atom and can demarcate terminal and bridging coordination
modes. (a) Klemperer, W. G. Angew. Chem., Int. Ed. Engl. 1978, 17, 246.
(b) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; J. Wiley
and Sons: New York, 1988; pp 127-129.
1
995, 34, 767 and references therein.
7) Day, V. W.; Klemperer, W. G.; Maltbie, D. J. Organometallics 1985,
, 104.
(
4
(
8) Derivatization of polyoxometalates which incorporate organometallic
n+
fragments into {MO} vacancies: (a) Day, V. W.; Fredrich, M. F.; Thompson,
M. R.; Klemperer, W. G.; Liu, R.-S.; Shum, W. J. Am. Chem. Soc. 1981,
(15) Lu, Y.-J.; Lalancette, R.; Beer, R. H. Inorg. Chem. 1996, 35, 2524.
3
(16) Colorless needles grown from CH CN solution by vapor diffusion of
1
03, 3597. (b) Klemperer, W. G.; Zhong, B. Inorg. Chem. 1993, 32, 5821.
2 2
Et O in a vial under N : crystal system, space group: triclinic, P 1h , Z ) 2.
(
9) Polyoxometalate bis(cyclopentadienyl) metallocene compounds: (a)
Cell constants: a ) 14.3725(2) Å, R ) 73.468(1)°, b ) 26.2888(1) Å, â )
4-
3
[
(Cp
D. J. J. Am. Chem. Soc. 1985, 107, 8262. (b) [Mo
Stark, J. L.; Young, V. G.; Maata, E. A. Angew. Chem., Int. Ed. Engl. 1995,
4, 2547.
2 2 5 19 2
U) (TiW O ) ]
: Day, V. W.; Earley, C. W.; Klemperer, W. G.; Maltbie,
76.193(1)°, c ) 26.5749(4) Å, γ ) 84.178(1)°. V ) 9341.7(3) Å . Z ) 2. R
2
-
2
6
O
18(NR)] (R ) Cp
2
Fe):
(I >2σ(Ι)): R
1
) 0.0818, wR
2
) 0.1622. GOF(F ) ) 1.132. The presence of
disordered solvent molecules is likely. X-ray crystallographic details are
provided in the Supporting Information.
3
1
0.1021/ja9905039 CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/14/1999