5
176
Y. Miyata et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5174–5176
Table 1
Residual ratio (%) of GSH in the reaction of BNTX derivatives 2 with GSH
11. Wu, T.; Nagle, A. S.; Chatterjee, A. K. Curr. Med. Chem. 2011, 18, 853.
12. Rodrigues, T.; Prudêncio, M.; Moreira, R.; Mota, M. M.; Lopes, F. J. Med. Chem.
2012, 55, 995.
Compd
R
Residual GSH (%) in
the presence of GST
Residual GSH (%) in
the absence of GST
13. Henry, M.; Alibert, S.; Orlandi-Pradines, E.; Bogreau, H.; Fusai, T.; Rogier, C.;
Barbe, J.; Pradines, B. Curr. Drug Targets 2006, 7, 935.
1
1
4. Egan, T. J.; Kaschula, C. H. Curr. Opin. Infect. Dis. 2007, 20, 598.
5. Miyata, Y.; Fujii, H.; Osa, Y.; Kobayashi, S.; Takeuchi, T.; Nagase, H. Bioorg. Med.
Chem. Lett. 2011, 21, 4710.
6. Portoghese, P. S.; Garzon-Aburbeh, A.; Nagase, H.; Lin, C. E.; Takemori, A. E. J.
Med. Chem. 1991, 34, 1292.
2
2
2
a
b
c
H
F
OMe
40.06 ± 0.41
39.62 ± 1.34
25.63 ± 1.18
31.82 ± 2.33
33.09 ± 1.47
18.03 ± 2.03
1
1
1
7. Müller, S.; Gilberger, T. W.; Krnajski, Z.; Lüersen, K.; Meierjohann, S.; Walter, R.
D. Protoplasma 2001, 217, 43.
8. Although glutathiones exist in cells at relatively high concentration, most
amounts of them are in not the reduced form (GSH) but the oxidized form
(GSSG). It is believed that the malaria parasites could convert GSSG into GSH
using GR on demand and utilize GSH for the decrease in the oxidative stress
level in erythrocytes. Therefore, the parasites are thought to be very
susceptible to the GSH level in erythrocytes.
protein (PfMRP) were said to play a central role in eliciting the CQ-
resistance, and intense investigations of these transporters have
been carried out. However, these studies showed that the entire
process of CQ-resistance could not be fully explained by the activ-
ities of these transporters alone.28 For example, mutations in the
Plasmodium vivax ortholog of CRT did not correlate with observed
O
NH
2
H
N
HO C
N
H
CO H
2
9
2
2
CQ-resistance, and in a series of CQ-resistant strains, P. chabaudi
O
O
3
0
S
S
CRT was not altered. Moreover, although PfMRP has been re-
ported to play a role in parasite response to antimalarial drugs
such as CQ and artemisinin, experiments using parasites with dis-
rupted PfMRP suggest that PfMRP might not be the key component
that can convert a clinically sensitive parasite into a resistant par-
asite. Our results imply that in addition to the effects of some
transporter proteins, GSH levels may also play an important role
in eliciting CQ-resistance.
In conclusion, we synthesized BNTX derivatives 2 and evaluated
their CQ-resistance reversing activities. BNTX derivatives 2 showed
CQ-resistance reversing effects. They also reacted with GSH, show-
ing both enzymatic and chemical effects, and inhibited GR activity.
H
N
HO C
CO H
2
2
N
H
O
NH2
3
1
oxidized glutathione (GSSG)
NADPH
GR
NADP
O
H
NH
2
7
-Benzyl derivative 3, which lacks a Michael acceptor structure,
N
exhibited CQ-resistance reversing effect, but its potency was sig-
nificantly lower than that of BNTX (2a). These outcomes suggest
that a decrease in GSH levels could be one of the mechanisms of
CQ-resistance reversing effects induced by BNTX derivatives.
HO C
N
H
CO H
2
2
O
HS
reduced glutathione (GSH)
19. Ginsburg, H.; Famin, O.; Zhang, J.; Krugliak, M. Biochem. Pharmacol. 1998, 56,
References and notes
1305.
2
2
0. Famin, O.; Krugliak, M.; Ginsburg, H. Biochem. Pharmacol. 1999, 58, 59.
1. Dubois, V. L.; Platel, D. F. N.; Pauly, G.; Tribouley-Duret, J. Exp. Parasitol. 1995,
1.
2.
3.
Dondorp, A. M.; Yeung, S.; White, L.; Nguon, C.; Day, N. P. J.; Socheat, D.; von
Seidlein, L. Nat. Rev. Microbiol. 2010, 8, 272. and references cited therein.
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. Angew. Chem., Int. Ed. 2003, 42,
8
1, 117.
2. Srivastava, P.; Puri, S. K.; Kamboj, K. K.; Pandey, V. C. Trop. Med. Int. Health 1999,
, 251.
2
2
4
3. BNTX (2a) smoothly reacted with sodium ethanethiolate at rt to provide
Michael adducts. The reaction of 2a with ethylmercaptan at rt proceeded
slowly (after 24 h, the Michael adducts were detected).
4. BNTX derivatives 2 were incubated with GSH in the presence or absence of GST
at 37 °C for 30 min. The residual ratios of GSH were obtained by measuring the
absorbance of the media.
5. GR was incubated with glutathione disulfide (GSSG) in the presence or absence
of the tested compounds at rt for one min. The GR inhibitions (%) were
calculated on the basis of the GSH amounts obtained by measuring the
absorbance of the media.
6. Schirmer, R. H.; Coulibaly, B.; Stich, A.; Scheiwein, M.; Merkle, H.; Eubel, J.;
Becker, K.; Becher, H.; Müller, O.; Zich, T.; Schiek, W.; Kouyaté, B. Redox Rep.
5
274.
4.
5.
6.
Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Bioorg. Med. Chem. 2009, 17, 3229.
Wells, T. N. C.; Alonso, P. L.; Gutteridge, W. E. Nat. Rev. Drug Disc. 2009, 8, 879.
Gamo, F.-J.; Sanz, L. M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.-L.;
Vanderwall, D. E.; Green, D. V. S.; Kumar, V.; Hasan, S.; Brown, J. R.; Peishoff, C.
E.; Cardon, L. R.; Garcia-Bustos, J. F. Nature 2010, 465, 305.
2
2
7
.
Guiguemde, W. A.; Shelat, A. A.; Bouck, D.; Duffy, S.; Crowther, G. J.; Davis, P. H.;
Smithson, D. C.; Connelly, M.; Clark, J.; Zhu, F.; Jiménez-Díaz, M. B.; Martinez,
M. S.; Wilson, E. B.; Tripathi, A. K.; Gut, J.; Sharlow, E. R.; Bathurst, I.; Mazouni,
F. E.; Fowble, J. W.; Forquer, I.; McGinley, P. L.; Castro, S.; Angulo-Barturen, I.;
Ferrer, S.; Rosenthal, P. J.; DeRisi, J. L.; Sullivan, D. J., Jr.; Lazo, J. S.; Roos, D. S.;
Riscoe, M. K.; Phillips, M. A.; Rathod, P. K.; Van Voorhis, W. C.; Avery, V. M.;
Guy, R. K. Nature 2010, 465, 311.
2
2
2003, 8, 272.
7. One of the other mechanisms may include some transporter proteins which are
said to play an important role in eliciting the CQ-resistance. We are now
investigating the other mechanisms of action by BNTX derivatives.
8. Müller, I. B.; Hyde, J. E. Future Microbiol. 2010, 5, 1857. and references cited
therein.
9. Nomura, T.; Carlton, J. M.-R.; Baird, J. K.; del Portillo, H. A.; Fryauff, D. J.;
Rathore, D.; Fidock, D. A.; Su, X.; Collins, W. E.; McCutchan, T. F.; Wootton, J. C.;
Wellems, T. E. J. Infect. Dis. 2001, 183, 1653.
0. Paul Hunt, P.; Cravo, P. V. L.; Donleavy, P.; Carlton, J. M.-R.; Walliker, D. Mol.
Biochem. Parasitol. 2004, 133, 27.
1. Raj, D. K.; Mu, J.; Jiang, H.; Kabat, J.; Singh, S.; Sullivan, M.; Fay, M. P.;
McCutchan, T. F.; Su, X. J. Biol. Chem. 2009, 284, 7689.
8
9
.
.
Wawer, M.; Bajorath, J. ACS Med. Chem. Lett. 2011, 2, 201.
Calderón, F.; Barros, D.; Bueno, J. M.; Coterón, J. M.; Fernández, E.; Gamo, F. J.;
Lavandera, J. L.; León, M. L.; Macdonald, S. J. F.; Mallo, A.; Manzano, P.; Porras,
E.; Fiandor, J. M.; Castro, J. ACS Med. Chem. Lett. 2011, 2, 741.
2
2
1
0. Meister, S.; Plouffe, D. M.; Kuhen, K. L.; Bonamy, G. M. C.; Wu, T.; Barnes, S. W.;
Bopp, S. E.; Borboa, R.; Bright, A. T.; Che, J.; Cohen, S.; Dharia, N. V.; Gagaring, K.;
Gettayacamin, M.; Gordon, P.; Groessl, T.; Kato, N.; Lee, M. C. S.; McNamara, C.
W.; Fidock, D. A.; Nagle, A.; Nam, T.; Richmond, W.; Roland, J.; Rottmann, M.;
Zhou, B.; Froissard, P.; Glynne, R. J.; Mazier, D.; Sattabongkot, J.; Schultz, P. G.;
Tuntland, T.; Walker, J. R.; Zhou, Y.; Chatterjee, A.; Diagana, T. T.; Winzeler, E. A.
Science 2011, 334, 1372.
3
3