Chemistry of Materials
ARTICLE
peripheries, the use of NPB as an additional HTL is thus not
necessary and could be even harmful because it may break the
charge balance in the EL device. With such regard, we fabricated
devices III and IV, in which the NPB or hole-transporting layers in
devices I and II are eliminated. The energy level diagrams and the
device architectures of 2TPATPE are depicted in Figure 8 as
example.
The EL spectra of both devices of TPATPE peak at 492 nm,
which is similar to the PL peak of the thin film (Figure 9A). The
EL performance of device I is impressive, with CEmax, PEmax, and
external quantum efficiency (EQEmax) being 8.6 cd/A, 5.3 lm/W,
and 3.4%, respectively (Table 2). Similar outstanding data (8.3
cd/A, 4.9 lm/W, and 3.3%) are also achieved in device III. At the
same voltage, device III shows better electronic character and
radiates more intensely than device I (Figure 9B). Clearly,
TPATPE is an excellent hole-transporting material, in addition
to being highly emissive in the solid state.
The OLED fabricated from 2TPATPE without a NPD layer
(device IV) shows even better performance. The device turns on
at a low bias of 3.2 V, emitting brilliantly with maximum
luminance of 33770 cd/m2 (Figure 10). The CEmax and PEmax
reach 13.0 cd/A and 11.0 lm/W, which are higher than those
attained by device II (Table 2). The high hole mobility of
2TPATPE and its matched HOMO energy level with the anode
may enable it to exhibit better EL performance in the absence of
NPB. The EQEmax is 4.4% and is comparable or even better than most
of the results reported previously for singlet OLEDs.6g One thing that
needs to be pointed out is that with a similar device structure, the
unsubstituted TPE only shows Lmax and CEmax of 1800 cd/m2 and
0.45 cd/A.15 Apparently, the EL properties of TPE can be readily
tuned by molecular engineering endeavors and incorporation of TPA
as substituent to TPE has resulted in new AIE luminogens with higher
thermal stability, more efficient solid-state emissions, and enhanced
hole-transporting properties. All these attributes make TPATPE and
2TPATPE better EL materials for OLED application.
’ ASSOCIATED CONTENT
Supporting Information. 1H and 13C NMR spectra, UV
S
b
absorption spectra, TEM images of nanoaggregates, and CV
spectra of TPATPE and 2TPATPE. This material is available free
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tangbenz@ust.hk. Phone: þ852-2358-7375. Fax:
þ852-2358-1594.
’ ACKNOWLEDGMENT
This project was partially supported by the Research Grants
Council of Hong Kong (603509, 601608, CUHK2/CRF/08, and
HKUST2/CRF/10), the Innovation and Technology Commis-
sion (ITP/008/09NP and ITS/168/09), the University Grants
Committee of Hong Kong (AoE/P-03/08), and the National
Science Foundation of China (20974028). B.Z.T. thanks the
support from Cao Guangbiao Foundation of Zhejiang
University.
’ REFERENCES
(1) (a) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(b) Mullen, K.; Scherf, U. Organic Light-Emitting Devices. Synthesis,
Properties and Applications; Wiley: Weinheim, Germany, 2006. (c)
Roncali, J.; Leriche, P.; Cravino, A. Adv. Mater. 2007, 19, 2045. (d)
Liu, B.; Dan, T. T. T.; Bazan, G. C. Adv. Funct. Mater. 2007, 17, 2432. (e)
Yang, S. H.; Hsu, C. S. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7173.
(2) (a) Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.;
Holmes, A. B. Chem. Rev. 2009, 109, 897. (b) Shimizu, M.; Tatsumi, H.;
Mochida, K.; Shimono, K.; Hiyama, T. Chem. Asian J. 2009, 4, 1289. (c)
Pu, K. Y.; Liu, B. Adv. Funct. Mater. 2009, 19, 277. (d) Iida, A.;
Yamaguchi, S. Chem. Commun. 2009, 3002. (e) Saragi, T. P. I.; Spehr,
T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007,
107, 101. (f) Yin, S.; Peng, Q.; Shuai, Z.; Fang, W.; Wang, Y.; Luo, Y.
Phys. Rev. B 2006, 73, 205409. (g) Kawamura, Y.; Goushi, K.; Brooks, J.;
Brown, J. J.; Sasabe, H.; Adachi, C. Appl. Phys. Lett. 2005, 86, 071104. (h)
Koren, A. B.; Curtis, M. D.; Francis, A. H.; Kampf, J. W. J. Am. Chem. Soc.
2003, 125, 5040. (i) Destri, S.; Pasini, M.; Botta, C.; Porzio, W.; Bertini,
F.; Marchio, L. J. Mater. Chem. 2002, 12, 924. (j) An, B.-K.; Kwon, S.-K.;
Jung, S.-D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410. (k) Friend,
R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.;
Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brꢀedas, J. L.; L€ogdlund,
M.; Salaneck, W. R. Nature 1999, 397, 121. (l) Baldo, M. A.; O’Brien,
D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R.
Nature 1998, 395, 151.
(3) (a) Lee, S. H.; Jang, B. B.; Kafafi, Z. H. J. Am. Chem. Soc. 2005,
127, 9071. (b) Marsitzky, D.; Vestberg, R.; Blainey, P.; Tang, B. T.;
Hawker, C. J.; Carter, K. R. J. Am. Chem. Soc. 2001, 123, 6965. (c)
Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Muellen, K.;
Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
(4) (a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.;
Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun.
2001, 1740. (b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun.
2009, 4332. (c) Liu, J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Organomet.
Polym. Mater. 2009, 19, 249. (d) Tang, B. Z. Macromol. Chem. Phys.
2009, 210, 900.
’ CONCLUSIONS
In this paper, TPA-containing tetraphenylethenes TPATPE
and 2TPATPE are synthesized and their optical properties are
investigated. Whereas they are almost nonluminescent when
molecularly dissolved in the solutions, they are induced to emit
intensely by aggregate formation, demonstrating an AIE phe-
nomenon. The AIE effect has boosted the quantum yields of their
solid thin films to unity. Both dye molecules enjoy high thermal
stability (g360 °C) and are morphological stable. Multilayer EL
devices with configurations of ITO/(NPB)/TPATPE or
2TPATPE/TPBi/Alq3/LiF/Al are constructed, which give sky
blue and green EL with maximum luminance and efficiencies of
33700 cd/m2, 13.0 cd/A, 11.0 lm/W, and 4.4%. The OLEDs
without hole-transporting layers show comparable or better
performances than those with HTL, possibly to the high hole
mobility of the TPA unit in the hybrid molecules.
The present results demonstrate that combining ACQ and
AIE units in one molecule is a good approach to surmount the
notorious ACQ problem. Traditional approaches attempt to
prevent luminophors from forming aggregates but generate
new problems. Our strategy, however, takes advantage of chro-
mophore aggregation without sacrificing other functional prop-
erties of the luminophors. Through such a tool, it is anticipated
that new AIE luminogens with new and/or enhanced functional
properties will be generated.
(5) Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.;
Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Chem. Commun.
2007, 40.
(6) (a) Chen, H.; Lam, W. Y.; Luo, J.; Ho, Y.; Tang, B. Z.; Zhu, D.;
Wong, M.; Kwok, H. S. Appl. Phys. Lett. 2002, 81, 574. (b) Liu, Y.; Tao, X.;
2543
dx.doi.org/10.1021/cm2003269 |Chem. Mater. 2011, 23, 2536–2544