Journal of the American Chemical Society
Page 4 of 6
literature (Table S4).1,5 Besides 1, 4, 10, 23, 24, 25 and 26, the
structures of 11, 17 and 18 were also determined by the X-ray
diffraction of corresponding derivatives (see SI).
(1) Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.; Tada,
T.; Koda, S.; Morimto, Y. The structure of vinigrol, a novel diterpenoid
with antihypertensive and platelet aggregation-inhibitory activities. J. Org.
Chem. 1987, 52, 5292−5293.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
In summary, we have developed a concise and scalable synthesis
to accomplish (−)-vinigrol. Each step of this route has been
optimized and validated on a gram-scale reaction whereas all the
reagents shown in Scheme 1 were commercially available. But the
synthetic approach is not without flaw. Even if the efficiency of our
approach in terms of the overall steps is high (20 steps from S-
limonene), the overall yield (1.4%) is lower than that of Baran’s for
racemic vinigrol (2.7%). If (+)-vinigrol is required, (R)-(+)-
limonene would be needed. Nonetheless, our new strategy enabled
the execution of carefully orchestrated transformations to construct
such a strained framework and uniquely substituted stereogenic
centers without the use of protecting groups. The investigation of
the biological activities of (−)-vinigrol are ongoing, which will be
reported in due course together with the evolution of our synthetic
strategies.
(
2) (a) Ando, T.; Tsurumi, Y.; Ohata, N.; Uchida, I.; Yoshida, K.;
Okuhara, M. Vinigrol, a novel antihypertensive and platelet aggregation
inhibitory agent produced by a fungus, Vigaria nigra I. Taxonomy,
fermentation, isolation, physicochemical and biological properties. J.
Antibiot. 1988, 41, 25−30. (b) Ando, T.; Yoshida, K.; Okuhara, M. Vinigrol,
a novel antihypertensive and platelet aggregation inhibitory agent produced
by a fungus, Vigaria nigra II. Pharmacological characteristics. J. Antibiot.
1
988, 41, 31−35.
3) Norris, D. B.; Depledge, P.; Jackson, A. P. Tumor necrosis factor
5
a
(
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
antagonist. PCT Int. Appl. WO 91/07953, 1991.
(4) (a) Tessier, G.; Barriault, L. The conquest of vinigrol. Creativity,
frustrations, and hope. Org. Prep. Proced. Int. 2007, 37, 313−353. (b)
Huters, A. D.; Garg, N. K. Synthetic studies inspired by vinigrol. Chem. -
Eur. J. 2010, 16, 8586−8595. (c) Lu, J.-Y.; Hall, D. G. Fragmentation
enables complexity in the first total synthesis of vinigrol. Angew. Chem.,
Int. Ed. 2010, 49, 2286−2288. (d) Draghici, C.; Njardarson, J. T. Synthetic
approaches and syntheses of vinigrol, a unique diterpenoid. Tetrahedron
2
015, 71, 3775−3793. (e) Betkekar, V. V.; Kaliappan, K. P. Strategic
innovations for the synthesis of vinigrol. Tetrahedron Lett. 2018, 59,
485−2501.
5) (a) Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. Total synthesis of
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
2
(
vinigrol. J. Am. Chem. Soc. 2009, 131, 17066−17067. (b) Poulin, J.; Grise-
Bard, C. M.; Barriault, L. A formal synthesis of vinigrol. Angew. Chem.,
Int. Ed. 2012, 51, 2111−2114. (c) Yang, Q.; Njardarson, J. T.; Draghici, C.;
Li, F. Total synthesis of vinigrol. Angew. Chem., Int. Ed. 2013, 52,
648−8651. (d) Betkekar, V. V.; Sayyad, A. A.; Kaliappan, K. P. A domino
enyne/IMDA approach to the core structure of (−)-vingirol. Org. Lett. 2014,
16, 5540−5543.
(6) Mak, J. Y. W.; Pouwer, R. H.; Williams, C. M. Natural products with
anti-Bredt and bridgehead double bonds. Angew. Chem., Int. Ed. 2014, 53,
13664−13688.
(7) (a) Zhao, R.; Wu, Y. Synthesis of deoxycurdione. Youji Huaxue
989, 9, 547−552. (b) Mehta, G.; Acharyulu, P. V. R. Terpenes to terpenes
through "Push-Pull" cyclopropanes: enantioselective construction of
germacrane, eudesmane and "copa" sesquiterpenoid skeleta from (+)-
limonene. Indian J. Chem., Sect B 1998, 37, 201−204.
(8) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. A convenient
stereoselective synthesis of substituted alkenes via hydroboration-
iodination of alkynes. J. Am. Chem. Soc. 1967, 89, 3652−3653.
(9) Boger, D. L.; Mullican, M. D. Inverse electron demand Diels-Alder
reaction of 3-carbomethoxy-2-pyrones with 1,1-dimethoxyethylene: a
simple and mild method of aryl annulation. Tetrahedron Lett. 1982, 23,
Experimental procedures and spectral data for all new
compounds (PDF)
8
X-ray crystallographic data for (−)-1 (CIF)
X-ray crystallographic data for (+)-4 (CIF)
X-ray crystallographic data for (+)-10 (CIF)
X-ray crystallographic data for (+)-23 (CIF)
X-ray crystallographic data for (+)-24 (CIF)
X-ray crystallographic data for (−)-25 (CIF)
X-ray crystallographic data for (−)-26 (CIF)
X-ray crystallographic data for (−)-S4 (CIF)
X-ray crystallographic data for (+)-S5 (CIF)
X-ray crystallographic data for (+)-S6 (CIF)
X-ray crystallographic data for (−)-S7 (CIF)
1
AUTHOR INFORMATION
Corresponding Author
4
551−4554.
10) Still, W. C.; Galynker, I. Chemical consequences of conformation
*tuopingluo@pku.edu.cn
(
in macrocyclic compounds: an effective approach to remote asymmetric
induction. Tetrahedron 1981, 37, 3981−3996.
Notes
(11) Mehta, G.; Acharyulu, P. V. R. Terpenes to terpenes. Stereo- and
The authors declare the following competing financial interest(s):
T. L., Y. X. and L. X. are inventors on patent application
ZL201811276421.1 submitted by Peking University that covers the
synthesis of (−)-vinigrol and related analogs.
enantio-selective synthesis of (+)-α-elemene and a short route to a versatile
diquinane chiron. J. Chem. Soc., Chem. Commun. 1994, 2759−2760.
(12) (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.;
Kamiya, Y. Reactions of carbonyl compounds with Grignard reagents in the
presence of cerium chloride. J. Am. Chem. Soc. 1989, 111, 4392−4398. (b)
Evans, D. A.; Andrews, G. C. Allylic sulfoxides: useful intermediates in
organic synthesis. Acc. Chem. Res. 1974, 7, 147−155.
ACKNOWLEDGMENT
This work was supported by generous start-up funds from the
National “Young 1000 Talents Plan” Program, College of
Chemistry and Molecular Engineering, Peking University and
Peking-Tsinghua Center for Life Sciences, the National Science
Foundation of China (Grant No. 21472003, 31521004, 21673011
and 21822101) and Ministry of Science and Technology (Grant No.
(13) Seeman, J. I. Effect of conformational change on reactivity in
organic chemistry. Evaluations, applications, and extensions of Curtin-
Hammett Winstein-Holness kinetics. Chem. Rev. 1983, 83, 83−134.
(
14) Rarig, R.-A. F.; Scheideman, M.; Vedejs, E. Oxygen-directed
intramolecular hydroboration. J. Am. Chem. Soc. 2008, 130, 9182−9183.
15) (a) Brown, H. C.; Mandal, A. K.; Yoon, N. M.; Singaram, B.;
(
Schwier, J. R.; Jadhav, P. K. Organoboranes. 27. Exploration of synthetic
procedures for the preparation of monoisopinocampheylborane. J. Org.
Chem. 1982, 47, 5069-5074. (b) Brown, H. C.; Jadhav, P. K.; Mandal, A.
K. Hydroboration. 62. Monoisopinocampheylborane; an excellent chiral
hydroborating agent for trans-disubstituted and trisubstituted alkenes.
2
017YFA0104000). We thank Dr. Fuling Yin, Dr. Jie Su, Dr.
Nengdong Wang, Prof. Wenxiong Zhang (Peking University) and
Dr. Xiang Hao (ICCAS) for their help in analyzing the X-ray
crystallography data, Dr. Yanlong Jiang (Peking University) for
helpful discussions and support from the High-performance
Computing Platform of Peking University.
Evidence for
a strong steric dependence in such asymmetric
hydroborations. J. Org. Chem. 1982, 47, 5074−5083. (c) Meyer, D.;
Renaud, P. Enantioselective hydroazidation of trisubstituted non-activated
alkenes. Angew. Chem., Int. Ed. 2017, 56, 10858−10861.
(16) Ogilby, P. R.; Foote, C. S. Chemistry of singlet oxygen. 34.
REFERENCES
ACS Paragon Plus Environment