The Journal of Physical Chemistry A
Article
implies a very low value of pK*N‑A. Finally, we used the dye
inside cells to examine its future application as a cell sensor.
Excitation of the cells at 530 nm indicated that 2-Me TM
accumulates visibly inside cytoplasmic structures and less
effectively but homogeneously accumulates in the cytosol and
nucleus.
Phosphate Detection in Live Cells. Org. Biomol. Chem. 2014, 12,
6
(
432−6439.
10) Paredes, J. M.; Giron, M. D.; Ruedas-Rama, M. J.; Orte, A.;
Crovetto, L.; Talavera, E. M.; Salto, R.; Alvarez-Pez, J. M. Real-Time
Phosphate Sensing in Living Cells using Fluorescence Lifetime
Imaging Microscopy (FLIM). J. Phys. Chem. B 2013, 117, 8143−8149.
(11) Fu, M.; Xiao, Y.; Qian, X.; Zhao, D.; Xu, Y. A Design Concept of
Long-Wavelength Fluorescent Analogs of Rhodamine Dyes: Replace-
ment of Oxygen With Silicon Atom. Chem. Commun. 2008, 1780−
1782.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(12) Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T.
Evolution of Group 14 Rhodamines as Platforms for Near-Infrared
Fluorescence Probes Utilizing Photoinduced Electron Transfer. ACS
Chem. Biol. 2011, 6, 600−608.
1H and 13C NMR data together with a copy of both
spectra (Figures S1 and S2); analysis of the absorbance
vs pH; analysis of the experimental fluorescence vs pH;
Figures S3−S9 of absorbance and fluorescence vs pH
traces, absorbance and emission spectra, fluorsecence
decay traces, contours of fluorescence instensity; and
evaluation of kinetic parameters (PDF)
(13) Pastierik, T.; Sebej, P.; Medalova, J.; Stacko, P.; Klan, P. Near-
Infrared Fluorescent 9-Phenylethynylpyronin Analogues for Bioimag-
ing. J. Org. Chem. 2014, 79, 3374−3382.
(14) Egawa, T.; Hirabayashi, K.; Koide, Y.; Kobayashi, C.; Takahashi,
N.; Mineno, T.; Terai, T.; Ueno, T.; Komatsu, T.; Ikegaya, Y.; et al.
Red Fluorescent Probe for Monitoring the Dynamics of Cytoplasmic
Calcium Ions. Angew. Chem., Int. Ed. 2013, 52, 3874−3877.
(15) Hirabayashi, K.; Hanaoka, K.; Takayanagi, T.; Toki, Y.; Egawa,
AUTHOR INFORMATION
Corresponding Author
58243831.
■
T.; Kamiya, M.; Komatsu, T.; Ueno, T.; Terai, T.; Yoshida, K.; et al.
Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein
and Its Application to Develop a Scaffold for Red Fluorescent Probes.
Anal. Chem. 2015, 87, 9061−9069.
*
9
(16) Koide, Y.; Urano, Y.; Hanaoka, K.; Piao, W.; Kusakabe, M.;
Author Contributions
Saito, N.; Terai, T.; Okabe, T.; Nagano, T. Development of NIR
Fluorescent Dyes Based on Si−rhodamine for in Vivo Imaging. J. Am.
Chem. Soc. 2012, 134, 5029−5031.
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
(
17) Kushida, Y.; Nagano, T.; Hanaoka, K. Silicon-Substituted
Xanthene Dyes and Their Applications in Bioimaging. Analyst 2015,
40, 685−695.
18) Egawa, T.; Koide, Y.; Hanaoka, K.; Komatsu, T.; Terai, T.;
Notes
1
(
The authors declare no competing financial interest.
Nagano, T. Development of a Fluorescein Analogue, Tokyo Magenta,
as a Novel Scaffold for Fluorescence Probes in Red Region. Chem.
Commun. 2011, 47, 4162−4164.
ACKNOWLEDGMENTS
This research was funded by MINECO (project CTQ2014-
6370-R), and MINECO (project CTQ2014-53598).
■
5
(
19) Orte, A.; Bermejo, R.; Talavera, E. M.; Crovetto, L.; Alvarez-Pez,
J. M. 2′,7′-difluorofluorescein Excited-State Proton Reactions:
Correlation between Time-Resolved Emission and Steady-State
Fluorescence Intensity. J. Phys. Chem. A 2005, 109, 2840−2846.
REFERENCES
■
(
1) Diehl, H.; Markuszewski, R. Studies on Fluorescein - VII. The
Fluorescence of Fluorescein as a Function Of pH. Talanta 1989, 36,
(20) Orte, A.; Crovetto, L.; Talavera, E. M.; Boens, N.; Alvarez-Pez, J.
M. Absorption and Emission Study of 2 ’,7 ’-difluorofluorescein and Its
Excited-State Buffer-Mediated Proton Exchange Reactions. J. Phys.
Chem. A 2005, 109, 734−747.
4
(
16−18.
2) Alvarez-Pez, J. M.; Ballesteros, L.; Talavera, E.; Yguerabide, J.
Fluorescein Excited-State Proton Exchange Reactions: Nanosecond
Emission Kinetics and Correlation with Steady-State Fluorescence
Intensity. J. Phys. Chem. A 2001, 105, 6320−6332.
(
21) O’Connor, D. V.; Phillips, D. Time-correlated single photon
counting; Academic Press: New York, 1984.
22) Badea, M. G.; Brand, L. [17] Time-Resolved Fluorescence
(
(
3) Yguerabide, J.; Talavera, E.; Alvarez, J. M.; Quintero, B. Steady-
Measurements. In Methods in Enzymology, Hirs, C. H. W.; Timasheff,
S. N., Eds.; Academic Press: New York, 1979; Vol. 61, pp 378−425.
State Fluorescence Method for Evaluating Excited State Proton
Reactions: Application to Fluorescein. Photochem. Photobiol. 1994, 60,
(23) Janssens, L. D.; Boens, N.; Ameloot, M.; De Schryver, F. C. A
4
(
35−41.
Systematic Study of the Global Analysis of Multiexponential
Fluorescence Decay Surfaces Using Reference Convolution. J. Phys.
Chem. 1990, 94, 3564−3576.
4) Paradiso, A. M.; Tsien, R. Y.; Machen, T. E. Na+-H+ Exchange in
Gastric Glands as Measured with a Cytoplasmic-Trapped, Fluorescent
pH Indicator. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 7436−40.
(
5) Rink, T. J.; Tsien, R. Y.; Pozzan, T. Cytoplasmic pH and Free
́
(24) Boens, N.; Basaric, N.; Novikov, E.; Crovetto, L.; Orte, A.;
2
+
Mg in Lymphocytes. J. Cell Biol. 1982, 95, 189−196.
Talavera, E. M.; Alvarez-Pez, J. M. Identifiability of the Model of the
Intermolecular Excited-State Proton Exchange Reaction in the
Presence of pH Buffer. J. Phys. Chem. A 2004, 108, 8180−8189.
(25) Best, Q. A.; Sattenapally, N.; Dyer, D. J.; Scott, C. N.;
McCarroll, M. E. pH-Dependent Si-Fluorescein Hypochlorous Acid
Fluorescent Probe: Spirocycle Ring-Opening and Excess Hypochlo-
rous Acid-Induced Chlorination. J. Am. Chem. Soc. 2013, 135, 13365−
13370.
(
6) Boens, N.; Qin, W.; Basaric, N.; Orte, A.; Talavera, E. M.;
Alvarez-Pez, J. M. Photophysics of the Fluorescent pH Indicator
BCECF. J. Phys. Chem. A 2006, 110, 9334−9343.
7) Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano,
T. Evolution of Fluorescein as a Platform for Finely Tunable
Fluorescence Probes. J. Am. Chem. Soc. 2005, 127, 4888−4894.
8) Martinez-Peragon, A.; Miguel, D.; Jurado, R.; Justicia, J.; Alvarez-
(
(
Pez, J. M.; Cuerva, J. M.; Crovetto, L. Synthesis and Photophysics of a
New Family of Fluorescent 9-Alkyl-Substituted Xanthenones. Chem. -
Eur. J. 2014, 20, 447−455.
(26) Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd ed.;
Springer: 2006.
(27) Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.;
Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.;
Schmid, B.; et al. Fiji: an Open-Source Platform for Biological-Image
Analysis. Nat. Methods 2012, 9, 676−682.
(
9) Martinez-Peragon, A.; Miguel, D.; Orte, A.; Mota, A. J.; Ruedas-
Rama, M. J.; Justicia, J.; Alvarez-Pez, J. M.; Cuerva, J. M.; Crovetto, L.
Rational Design of a New Fluorescent ’ON/OFF’ Xanthene Dye for
H
J. Phys. Chem. A XXXX, XXX, XXX−XXX