Romuald et al.
JOCArticle
machines have been devoted to nanotechnology in the
2
domain of materials, whereas the potential interest of
been designed up to date to possess either a stretched co-
conformation or a continuous oscillating shuttling behavior
between a contracted and a half-contracted co-conformation
rotaxane-based molecules in the medicinal field has just
emerged in the past few years as a promising and exciting
7
as in a degenerate-like [2]rotaxane molecular machine. We
have recently described a very direct and efficient access
3
investigation field. As a part of rotaxane molecular ma-
4
5
8
chines, [c2]daisy chains acting as molecular muscles repre-
sent interesting targets, but few synthetic examples have been
reported so far. [c2]Daisy chains consist of a rotaxane dimer,
in which each interwoven hermaphrodite monomer contains
a macrocycle linked to a thread, which includes one or more
template moieties for the macrocycle. When two molecular
stations are located in the thread, such molecules can adopt
either a stable contracted or a stretched co-conformation,
depending on the relative affinity of the two sites of recogni-
tion for the macrocycle. The incorporation of [c2]daisy chain
moieties in polymeric chains has been recently realized by
Stoddart and Grubbs in order to modify the length of poly-
mers by controlling the pH, hence to change material
to bistable pH-sensitive mannosyl molecular machines
9
and molecular muscle containing a dibenzo-24-crown-8
(DB24C8) ring or a derivative and based on an ammonium
and either a pyridinium amide or a triazolium molecular
stations. Here, we report on the synthesis and the shuttling
behavior of different [c2]daisy chains, consisting of manno-
syl ends and DB24C8-like rings and based on two or three
molecular stations (ammonium, triazolium, pyridinium
amide stations) for the DB24C8 ring derivatives. In the case
of the three-station-containing [c2]daisy chains, each mole-
cular station was spaced out by a hexamethylenic alkyl chain,
allowing very well differentiated co-conformations of the
molecules (Figure 1). For all of the considered interwoven
[c2]daisy chain structures, the protonated ammonium state
1-2 allows for a stretched co-conformation in which the two
mannosyl ends are located far away from each other. Since
deprotonation of encircled ammonium required strong bases
for most of our interwoven molecules, and since the free
nucleophilic amine-containing molecular muscle was not
stable enough in time, it often led to side degradation. To
displace the protonation/deprotonation equilibrium, a mild
carbamoylation of the generated amine using a weak base
was used instead and afforded different desired unstretched
6
properties. To the best of our knowledge, no molecular
muscle, including more than two stations, and which could
then adopt more than two co-conformations has been en-
visaged until now. Moreover, no molecular muscles have
(
3) (a) Fernandes, A.; Viterisi, A.; Coutrot, F.; Potok, S.; Leigh, D. A.;
Aucagne, V.; Papot, S. Angew. Chem., Int. Ed. 2009, 48, 6443–6447. (b)
Nguyen, T. D.; Tseng, H. R.; Celestre, P. C.; Flood, A. H.; Liu, Y.; Stoddart,
J. F.; Zink, J. I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10029–10034. (c)
Leung, K. C. F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Chem. Mater.
2
006, 18, 5919–5928. (d) Nguyen, T. D.; Leung, K. C. F.; Liong, M.;
Pentecost, J. F.; Stoddart, J. F.; Zink, J. I. Org. Lett. 2006, 8, 3363–3366.
e) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart, J. F.; Zink,
(
J. I. J. Am. Chem. Soc. 2007, 129, 626–634. (f) Nguyen, T. D.; Leung,
K. C. F.; Liu, Y.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater. 2007, 17,
(4) (a) Cantrill, S. J.; Youn, G. J.; Stoddart, J. F. J. Org. Chem. 2001, 66,
6857–6872. (b) Chiu, S. H.; Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J. Chem. Commun. 2002, 2948–2949. (c)
Amirsakis, D. G.; Elizarov, A. M.; Garcia-Garibay, M. A.; Glink, P. T.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2003,
42, 1126–1132. (d) Fujimoto, T.; Sakata, Y.; Kaneda, T. Chem. Commun.
2000, 2143–2144. (e) Onagi, H.; Easton, C. J.; Lincoln, S. F. Org. Lett. 2001,
3, 1041–1044. (f) Park, J. W.; Lee, S. Y.; Song, H. J.; Park, K. K. J. Org.
Chem. 2005, 70, 9505–9513. (g) Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J. Org. Lett. 2000, 2, 759–762. (h) Ueng, S. H.;
Hsueh, S. Y.; Lai, C. C.; Liu, Y. H.; Peng, S. M.; Chiu, S. H. Chem. Commun.
2008, 817–819. (i) Yamaguchi, N.; Gibson, H. W. Chem. Commun. 1999,
789–790. (j) Rowan, S. J.; Stoddart, J. F. Polym. Adv. Technol. 2002, 13, 777–
787. (k) Ashton, P. R.; Parsons, I. W.; Raymo, F. M.; Stoddart, J. F.; White,
A. J. P.; Williams, D. J.; Wolf, R. Angew. Chem., Int. Ed. 1998, 37, 1913–
1916. (l) Ashton, P. R.; Baxter, I.; Cantrill, S. J.; Fyfe, M. C. T.; Glink, P. T.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1998,
37, 1294–1297.
(5) (a) Bonnet, S.; Collin, J. P.; Koizumi, M.; Mobian, P.; Sauvage, J. P. Adv.
Mater. 2006, 18, 1239–1250. (b)Collin, J. P.;Heitz, V.; Bonnet, S.; Sauvage, J. P.
Inorg. Chem. Commun. 2005, 8, 1063–1074. (c) Jimenez-Molero, M. C.;
Dietrich-Buchecker, C.; Sauvage, J. P. Chem.;Eur. J. 2002, 8, 1456–1466. (d)
Colasson, B. X.; Dietrich-Buchecker, C.; Jimenez-Molero, M. C.; Sauvage, J. P.
J. Phys. Org. Chem. 2002, 15, 476–483. (e) Collin, J. P.; Dietrich-Buchecker, C.;
Gavina, P.; Jimenez-Molero, M. C.; Sauvage, J. P. Acc. Chem. Res. 2001, 34,
477–487. (f) Consuelo Jimenez, M.; Dietrich-Buchecker, C.; Sauvage, J. P.
Angew.Chem., Int.Ed.2000, 39, 3284–3287. (g) Wu, J.;Leung,K. C. F.;Benitez,
D.; Han, J. Y.; Cantrill, S. J.; Fang, L.; Stoddart, J. F. Angew. Chem., Int. Ed.
2008, 47, 7470–7474. (h) Dawson, R. E.; Lincoln, S. F.; Easton, C. J. Chem.
Commun. 2008, 3980–3982.
2
101–2110. (g) Angelo, S.; Johansson, E.; Stoddart, J. F.; Zink, J. I. Adv.
Funct. Mater. 2007, 17, 2261–2271. (h) Patel, K.; Angelo, S.; Dichtel, W. R.;
Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F. J. Am. Chem. Soc. 2008,
1
30, 2382–2383. (i) Agelos, S.; Yang, Y. W.; Patel, K.; Stoddart, J. F.; Zink, J.
Angew. Chem., Int. Ed. 2008, 47, 2222–2226. (j) Klichko, Y.; Liong, M.; Choi,
E.; Angelo, S.; Nel, A. E.; Stoddart, J. F.; Tamanoi, F.; Zink, J. I. J. Am.
Ceram. Soc. 2009, 92, S2–S10. (k) Ferris, D. P.; Zhao, Y. L.; Khashab, N. M.;
Khatib, H. A.; Stoddart, J. F.; Zink, J. J. Am. Chem. Soc. 2009, 131, 1686–
1
688. (l) Khashab, N. M.; Trabolsi, A.; Lau, Y. A.; Ambrogio, M. W.;
Friedman, D. C.; Khatib, H. A.; Zink, J. I.; Stoddart, J. F. Eur. J. Org. Chem.
009, 1669–1673. (m) Khashab, N. M.; Belowich, M. E.; Trabolsi, A.;
2
Friedman, D. C.; Valente, C.; Lau, Y. N.; Khatib, H. A.; Zink, J. I.; Stoddart,
J. F. Chem. Commun. 2009, 5371–5373. (n) Liong, M.; Angelo, S.; Choi, E.;
Patel, K.; Stoddart, J. F.; Zink, J. I. J. Mater. Chem. 2009, 19, 6251–6257. (o)
Angelos, S.; Yang, Y. W.; Khashab, N. M.; Stoddart, J. F.; Zink, J. I. J. Am.
Chem. Soc. 2009, 131, 11344–11346. (p) Angelo, S.; Khashab, N. M.; Yang,
Y. W.; Trabolsi, A.; Khatib, H. A.; Stoddart, J. F.; Zink, J. I. J. Am. Chem.
Soc. 2009, 131, 12912–12914. (q) Du, L.; Liao, S. J.; Khatib, H. A.; Stoddart,
J. F.; Zink, J. I. J. Am. Chem. Soc. 2009, 131, 15136–15142. (r) Wang, X.;
Bao, X.; Mc Farland-Mancini, M.; Isaacsohn, I.; Drew, A. F.; Smithrud,
D. B. J. Am. Chem. Soc. 2007, 129, 7284–7293. (s) Bao, X.; Isaacsohn, I.;
Drew, A. F.; Smithrud, D. B. J. Am. Chem. Soc. 2006, 128, 12229–12238. (t)
Smukste, I.; Smithrud, D. B. J. Org. Chem. 2003, 68, 2547–2558. (u)
Dvornikovs, V.; House, B. E.; Kaetzel, M.; Dedman, J. R.; Smithrud,
D. B. J. Am. Chem. Soc. 2003, 125, 8290–8301. (v) Zhu, J.; House, B. E.;
Fleck, E.; Isaacsohn, I.; Drew, A. F.; Smithrud, D. B. Bioorg. Med. Chem.
Lett. 2007, 17, 5058–5062. (w) Zhu, J.; Mc Farland-Mancini, M.; Drew,
A. F.; Smithrud, D. B. Bioorg. Med. Chem. Lett. 2009, 19, 520–523. (x)
Eguchi, M.; Ooya, T.; Yui, N. J. Controlled Release 2004, 96, 301–307. (y)
Ooya, T.; Arizono, K.; Yui, N. Polym. Adv. Technol. 2000, 11, 642–651. (z)
Ooya, T.; Yui, N. J. Controlled Release 1999, 58, 251–269. (aa) Ooya, T.; Yui,
N. Crit. Rev. Ther. Drug 1999, 16, 289–330. (ab) Ooya, T.; Yui, N. STP
Pharma Sci. 1999, 9, 129–138. (ab) Ooya, T.; Yui, N. In Biomedical Polymers
and Polymer Therapeutics; Kluwer Academic/Plenum Publishers: New York,
(6) (a) Fang, L.; Hmadeh, M.; Wu, J.; Olson, M. A.; Spruell, J. M.; Trabolsi,
A.; Yang, Y.-W.; Elhabiri, M.; Albrecht-Gary, A.-M.; Stoddart, J. F. J. Am.
Chem. Soc. 2009, 131, 7126–7134. (b) Clark, P. G.; Day, M. W.; Grubbs, R. H.
J. Am. Chem. Soc. 2009, 131, 13631–13633. (c) Guidry, E. N.; Li., J.; Stoddart,
J. F.; Grubbs, R. H. J. Am. Chem. Soc. 2007, 129, 8944–8945.
(7) (a) Yoon, I.; Benitez, D.; Zhao, Y.-L.; Miljanic, O. S.; Kim, S. -Y.;
Tkatchouk, E.; Leung, K. C.-F.; Khan, S. I.; Goddard, W. A., III; Stoddart,
J. F. Chem.;Eur. J. 2009, 15, 1115–1122. (b) Credi, A. J. Phys.: Condens.
Matter. 2006, 18, 1779–1795. (c) Anelli, P. L.; Spencer, N.; Stoddart, J. F.
J. Am. Chem. Soc. 1991, 113, 5131–5133. (d) Balzani, V.; Credi, A.; Ferrer,
B.; Silvi, S.; Venturi, M. Top. Curr. Chem. 2005, 262, 1–27.
2
001; pp 75-90. (ac) Cheetham, A. G.; Hutchings, M. G.; Claridge, T. D. W.;
Anderson, H. L. Angew. Chem., Int. Ed. 2006, 45, 1596–1599. (ad) Katz, E.;
Sheeney-Haj-Ichia, L.; Willner, I. Angew. Chem., Int. Ed. 2004, 43, 3292–
3
2
300. (ae) Belitsky, J. M.; Nelson, A.; Stoddart, J. F. Org. Biomol. Chem.
006, 4, 250–256. (af) Nelson, A.; Belitsky, J. M.; Vodal, S.; Joiner, C. S.;
Baum, L. G.; Stoddart, J. F. J. Am. Chem. Soc. 2004, 126, 11914–11922. (ag)
Chwalek, M.; Auz ꢀe ly, R.; Fort, S. Org. Biomol. Chem 2009, 7, 1680–1688.
(ah) Yui, N.; Ooya, T. Chem.;Eur. J. 2006, 12, 6730–6737. (ah) Ooya, T.;
Eguchi, M.; Yui, N. J. Am. Chem. Soc. 2003, 125, 13016–13017.
(8) (a) Coutrot, F.; Busseron, E. Chem.;Eur. J. 2008, 14, 4784–4787.
(b) Coutrot, F.; Busseron, E. Chem.;Eur. J. 2009, 15, 5186–5190.
(9) Coutrot, F.; Romuald, C.; Busseron, E. Org. Lett. 2008, 10, 3741–
3744.
J. Org. Chem. Vol. 75, No. 19, 2010 6517