2
08 Letters in Organic Chemistry, 2015, Vol. 12, No. 3
Guo et al.
1
NMR spectra were recorded on a Bruker Avance III (400
MHz) spectrometer using tetramethylsilane as the internal
3, 5, 3’, 5’-Tetrafluorobiphenyl [19]: H NMR (CDCl
7.1-7.2 (6Harom, m, 6CH).
3
):
):
ꢁ
H
H
standard and CDCl
3
as the solvent.
1
2
, 4, 2’, 4’-Tetrafluorobiphenyl [38]: H NMR (CDCl
3
ꢁ
6.74 (4Harom, m, 4CH), 7.35 (2Harom, m, 2CH).
Synthesis of Catalyst PdCl
2
(NH
2
CH
2
COOH)
2
The catalyst PdCl (NH
was prepared according to recently reported literature proce-
dures summarized in Scheme 1 [35].
2
2
CH COOH)
2
2
used in this work
CONFLICT OF INTEREST
The authors confirm that this article content has no
conflict of interest.
CH CH OH
3
2
PdCl +2NH CH COOH
PdCl (NH CH COOH)
2 2 2 2
2
2
2
CH COOH
3
RT
ACKNOWLEDGEMENTS
We are grateful to the National Natural Science Founda-
tion of China (No. 21063015, No. 21363026), Jiangxi Pro-
vincial Natural Science Foundation of China (No. 20114
BAB203012) and the Key Science and Technology plan of
Yichun City (No. [2010] 24) for their financial support.
Scheme 1. Synthesis of the catalyst.
Typical Experimental Procedure for Homocoupling
Reaction of Aryl Boronic Acids
To a stirred i-PrOH /H
arylboronic acid (1.0 mmol), PdCl
2
O 3 mL (v/v = 1/2) solution of
(NH CH COOH) (0.5
SUPPLEMENTARY MATERIALS
2
2
2
2
mol%), potassium carbonate (1 mmol) and ꢀ-
Toluenesulfonyl chloride (0.5 mmol). The solution was
stirred at room temperature under ambient atmosphere for 20
h. Ethyl acetate (3ꢀ25 mL) was added to extract the product.
Supplementary material is available on the publisher’s
web site along with the published article.
REFERENCES
4
The combined organic phase was dried with MgSO , filtrate,
solvent was removed on a rotary evaporator, and the product
was isolated by preparative thin layer chromatography on
[1]
Bringmann, G.; Menche, D. Stereoselective total synthesis of axi-
ally chiral natural products via biaryl lactones. Acc. Chem. Res.,
2001, 34, 615-624.
Meier, H. Conjugated oligomers with terminal donor–acceptor
substitution. Angew. Chem. Int. Ed., 2005, 44, 2482-2506.
Brunel, J. M. BINOL: A versatile chiral reagent. Chem. Rev., 2005,
105, 857-898.
Li, Z.; Gao, Y.; Tang, Y.; Dai, M.; Wang, G.; Wang, Z.; Yang, Z.
Total synthesis of crisamicin A. Org. Lett., 2008, 10, 3017-3020.
Vogler, T.; Studer, A. Rhodium-catalyzed oxidative homocoupling
of boronic acids. Adv. Synth. Catal., 2008, 350, 1963-1967.
Wang, L.; Wang, H.; Zhang, W.; Zhang, J.; Lewis, J. P.; Meng, X.;
Xiao, F. Aerobic homocoupling of phenylboronic acid on Mg-Al
mixed-oxides-supported Au nanoparticles. J. Catal., 2013, 298,
186-197.
Matsuda, T.; Asai, T.; Shiose, S.; Kato, K. Homocoupling of aryl-
boronic acids catalyzed by simple gold salts. Tetrahedron Lett.,
2011, 52, 4779-4781.
Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H.
Mechanism of the palladium-catalyzed homocoupling of arylbo-
ronic acids: key involvement of a palladium peroxo complex. J.
Am. Chem. Soc., 2006, 128, 6829-6836.
Kirai, N.; Yamamoto, Y. Homocoupling of Arylboronic Acids
Catalyzed by 1, 10-Phenanthroline-Ligated Copper Complexes in
Air. Eur. J. Org. Chem., 2009, 1864-1867.
Mao, J.; Hua, Q.; Xie, G.; Yao, Z.; Shi, D. Iodine-promoted effi-
cient homocoupling of arylboronic acids in PEG-400 under aerobic
conditions. Eur. J. Org. Chem., 2009, 14, 2262-2266.
Singh, F. V.; Stefani, H. A. Ultrasound-assisted synthesis of sym-
metrical biaryls by palladium-catalyzed detelluration of 1,2-
diarylditellanes. Tetrahedron Lett., 2010, 51, 863-867.
Sophiphun, O.; Wittayakun, J.; Dhital, R. N.; Haesuwannakij, S.;
Murugadoss, A.; Sakurai, H. Gold/palladium bimetallic alloy nano-
clusters stabilized by chitosanas highly efficient and selective cata-
lysts for homocoupling of arylboronic acid. Aust. J. Chem., 2012,
65, 1238-1243.
González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Ho-
mogeneous and heterogenized Au(III) Schiff base-complexes as se-
lective and general catalysts for self-coupling of aryl boronic acids.
Chem. Commun., 2005, 1990-1992.
Dhital, R. N.; Murugadoss, A.; Sakurai, H. Dual roles of polyhy-
droxy matricesin the homocoupling of arylboronic acids catalyzed
by gold nanoclusters under acidic conditions. Chem. Asian J., 2012,
7, 55-59.
1
silica gel. The purified products were identified by H NMR,
1
3
[2]
[3]
C NMR spectroscopy. All the biaryl products are known
compounds, Spectral data for symmetrical biaryls:
1
4
, 4’-Dimethylbiphenyl [29]: H NMR (CDCl
3
): ꢁ
H
2.45
[4]
(
6H, s, 2CH
d, J=8.0 Hz, 4CH); C NMR (CDCl
29.5, 136.7, 138.3.
3
), 7.29 (4Harom, d, J=7.2 Hz, 4CH), 7.54 (4Harom,
13
C
): ꢁ 21.11, 126.8,
[5]
3
1
[6]
1
Biphenyl[29]: H NMR (CDCl
3 H
): ꢁ 7.66 (4Harom, d,
J=7.2 Hz, 4CH), 7.49 (4Harom, d, J=7.6 Hz, 4CH), 7.42
1
3
(
3 C
2Harom, t, J=7.2 Hz, 2CH); C NMR (CDCl ): ꢁ 127.2,
[
7]
8]
1
27.3, 128.8, 141.3.
, 4’-Dimethoxybiphenyl [29]: H NMR (CDCl
.87 (6H, s, 2CH ), 6.99 (4Harom, d, J=8.8 Hz, 4CH), 7.51
1
4
3 H
): ꢁ
[
3
3
1
3
(
1
4Harom, d, J=8.8 Hz, 4CH); C NMR (CDCl
14.2, 127.7, 133.5, 158.7.
3
): ꢁ
C
55.3,
[
9]
1
4
, 4’-Difluorobiphenyl [30]: H NMR (CDCl
3
): ꢁ
H
7.43
(
4Harom, d, J=8.8 Hz, 4CH), 7.50 (4Harom, d, J=8.8 Hz, 4CH);
1
3
[10]
C NMR (CDCl
3
): ꢁ
C
128.1, 129.1, 133.7, 138.4.
1
4
, 4’-Diethylbiphenyl [37]: H NMR (CDCl
3
): ꢁ
H
1.28
[
11]
(
2
6H, t, J=7.6 Hz, 2CH
CH CH ), 7.26 (4Harom, d, J=8.0 Hz, 4CH), 7.50 (4Harom, d,
J=8.4 Hz, 4CH); C NMR (CDCl
28.2, 138.6, 143.0.
2 3
CH ), 2.69 (4H, q, J=7.6 Hz,
2
3
1
3
3
): ꢁ
C
15.6, 28.5, 126.9,
[12]
1
1
4
, 4’-Dipropylbiphenyl [39]: H NMR (CDCl
6H, t, J=7.2 Hz, 2CH CH CH ), 1.63-1.72 (4H, m,
CH CH CH ), 2.62 (4H, t, J=7.2 Hz, 2CH CH CH ), 7.23
4Harom, d, J=8.0 Hz, 4CH), 7.50 (4Harom, d, J=8.0 Hz, 4CH);
3
3 H
): ꢁ 0.97
(
2
2
2
3
[
13]
2
2
3
2
2
3
(
1
C NMR (CDCl
41.5.
3
): ꢁ
C
13.9, 24.6, 37.7, 126.8, 128.8, 138.6,
1
[14]
1
4
, 4’-Dichlorobiphenyl [30]: H NMR (CDCl
3
): ꢁ
H
7.43
(
4Harom, d, J=8.0 Hz, 4CH), 7.50 (4Harom, d, J=8.0 Hz, 4CH).