Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC04293K
COMMUNICATION
Journal Name
makes for the best selectivity for ATP.20 Besides, the selective
recognition of the probe to ATP may also be improved by a
more effective π-π stacking interaction between the
backbones of CP and adenine due to matched spatial
orientations.3 We also investigated the response of the new
probe for nucleoside bases, such as adenosine, guanosine,
cytidine and uridine. The ratio only increases a little no matter
adding A, G, C or U to the mixture. In addition, PPi, ribose,
various anions and bio-related metal ions were also chosen to
examine the selectivity of the new probe. No obvious
enhancement of ratio R is observed no matter whichever is
present. Furthermore, we studied the interference from
saccharides 21, such as glucose, fructose and mannose (Fig. S3).
These saccharides do not make obvious interference on ATP
detection. These results demonstrate that the novel approach
exhibits excellent selectivity for ATP detection. Importantly,
both the electrostatic interactions and covalent binding play a
significant and synergetic role in specifically sensing ATP. The
two are independent, which illustrates the high selectivity of
the new probe.
1
2
P. P. Neelakandan, M. Hariharan and D. Ramaiah, J. Am. Chem. Soc.,
2006, 128, 11334-11335.
(a) T. Tsuyama, J. I. Kishikawa, Y. W. Han, Y. Harada, A. Tsubouchi, H.
Noji, A. Kakizuka, K. Yokoyama, T. Uemura and H. Imamura, Anal. Chem.,
2013, 85, 7889-7896. (b) C. H. Ma, C. S. Lin, Y. R. Wang and X. Chen, Trac-
Trends Anal. Chem., 2016, 77, 226-241.
3
4
5
K. Y. Tan, C. Y. Li, Y. F. Li, J. J. Fei, B. Yang, Y. J. Fu and F. Li, Anal. Chem.,
2017, 89, 1749-1756.
C. Lin, Z. Cai, Y. Wang, Z. Zhu, C. J. Yang and X. Chen, Anal. Chem., 2014,
86, 6758-6762.
(a) I. S. Kucherenko, D. Y. Didukh, O. O. Sodatkin and A. P. Soldatkin,
Anal. Chem., 2014, 86, 5455-5462. (b) M. Li, J. Zhang, S. Suri, L. J. Sooter,
D. Ma and N. Wu, Anal. Chem., 2012, 84, 2837-2842. (c) E. Gout, F.
Rebeille, R. Douce and R. Bligny, Proc. Natl. Acad. Sci. U.S.A., 2014, 111
E4560-4567. (d) D. A. Middleton, E. Hughes and M. Esmann, Angew.
Chem., Int. Ed., 2011, 50, 7041-7044. (e) X. Liu, F. Wang, R. Aizen, O.
,
Yehezkeli and I. Willner, J. Am. Chem. Soc., 2013, 135, 11832-11839. (f) X.
Chen, X. Tian, I. Shin and J. Yoon, Chem. Soc. Rev., 2011, 40, 4783-4804.
W. D. McElroy, Proc. Natl. Acad. Sci. U.S.A., 1947, 33, 342-345.
6
7
(a) A. Ojida, I. Takashima, T. Kohira, H. Nonaka and I. Hamachi, J. Am.
Chem. Soc., 2008, 130, 12095-12101. (b) Z. Xu, N. J. Singh, J. Lim, J. Pan,
H. N. Kim, S. Park, K. S. Kim and J. Yoon, J. Am. Chem. Soc., 2009, 131
,
15528-15533. (c) A. J. Moro, P. J. Cywinski, S. Korsten and G. J. Mohr,
Chem. Commun., 2010, 46, 1085-1087. (d) A. S. Rao, D. Kim, H. Nam, H.
Jo, K. H. Kim, C. Ban and K. H. Ahn, Chem. Commun., 2012, 48, 3206-
Finally, we compared the performance of our new method
with other methods reported recently in literatures. As shown
in Table S2, although most of the reported ways showed lower
LOD than that of our approach, they presented limited
selectivity because they cannot distinguish NPPs and/or
nucleotide bases. Taking advantage of the multisite-binding
strategy, our CPs-based combination probe greatly improves
the selectivity of ATP sensor. Although the multi-site sensors
reported by Chang’ group and Li’ group presented a good
3208. (e) H. Zhang, X. Ma, K. T. Nguyen and Y. Zhao, ACS Nano, 2013, 7,
7853-7863. (f) X. Li, X. Guo, L. Cao, Z. Xun, S. Wang, S. Li, Y. Li and G.
Yang, Angew. Chem., Int. Ed., 2014, 53, 7809-7813. (g) Z. Chen, P. Wu, R.
Cong, N. Xu, Y. Tan, C. Tan and Y. Jiang, ACS Appl. Mater. Interfaces,
2016, 8, 3567-3574.
8
9
L. Wang, L. Yuan, X. Zeng, J. Peng, Y. Ni, J. C. Er, W. Xu, B. K. Agrawalla, D.
Su, B. Kim and Y. T. Chang, Angew. Chem., Int. Ed., 2016, 55, 1773-1776.
H. Z. He, V. P. Ma, K. H. Leung, D. S. Chan, H. Yang, Z. Cheng, C. H. Leung
and D. L. Ma, Analyst, 2012, 137, 1538-1540.
10 Y. Wei, Y. Chen, H. Li, S. Shuang, C. Dong and G. Wang, Biosens.
Bioelectron., 2015, 63, 311-316.
8
selectivity, they are less sensitive.3, Therefore, our new
11 M. Zhao, L. Liao, M. Wu, Y. Lin, X. Xiao and C. Nie, Biosens. Bioelectron.,
2012, 34, 106-111.
method demonstrates an obvious advantage for ATP detection
with high selectivity and good sensitivity.
12 L. Wang, L. Yuan, X. Zeng, J. J. Peng, Y. Ni, J. C. Er, W. Xu, B. K. Agrawalla,
D. D. Su, B. Kim and Y. T. Chang, Angew. Chem., Int. Ed., 2016, 55, 1773-
1776.
In summary, we have designed
a novel CPs-based
combination probe for ATP detection based on multisite-
binding and FRET mechanism. The cationic conjugated polymer
PFP-NMe3+ functions as the energy donor while a PBA and PEG
modified conjugated polymer PPE-PBA acts as the energy
acceptor. When ATP was introduced, strong electrostatic
attraction and covalent binding between the CPs and ATP
functioned cooperatively to narrow the distance between two
CPs, which brings the strong FRET from donor to acceptor. The
significant enhancement of fluorescence ratio can be used to
quantify the concentration of ATP. Our new method
demonstrated a sensitive and highly selective detection for
ATP by taking advantage of high light-harvesting and strong
fluorescence properties of CPs and CPs-based FRET. This study
should provide a novel strategy for designing composite CPs-
based ratiometric probes to detect chemical and biological
analytes via multisite interactions.
13 (a) C. Zhu, L. Liu, Q. Yang, F. Lv and S. Wang, Chem. Rev., 2012, 112, 4687-
4735. (b) L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv and S. Wang, Chem. Soc.
Rev., 2013, 42, 6620-6633. (c) Q. L. Cui, Y. Yang, C. Yao, R. H. Liu and L. D.
Li, ACS Appl. Mater. Interfaces, 2016, 8, 35578-35586.
14 (a) B. Liu, B. S. Gaylord, S. Wang and G. C. Bazan, J. Am. Chem. Soc., 2003,
125, 6705-6714. (b) T. Hong, T. Wang, P. Guo, X. Xing, F. Ding, Y. Chen, J.
Wu, J. Ma, F. Wu and X. Zhou, Anal. Chem., 2013, 85, 10797-10802. (c) L.
R. Swem, D. L. Swem, C. T. O'Loughlin, R. Gatmaitan, B. X. Zhao, S. M.
Ulrich and B. L. Bassler, Mol. Cell, 2009, 35, 143-153. (d) C. Li, M. Numata,
M. Takeuchi and S. Shinkai, Angew. Chem., Int. Ed., 2005, 44, 6371-6374.
(e) D. Cheng, Y. Li, J. Wang, Y. Sun, L. Jin, C. Li and Y. Lu, Chem. Commun.,
2015, 51, 8544-8546.
15 J. K. Lee, Y. H. Jung, J. B. Tok and Z. Bao, ACS Nano, 2011, 5, 2067-2074.
16 (a) H. Morawetz, Science, 1988, 240, 172-176. (b) N. Q. An, Q. Zhang, J.
Wang, C. Liu, L. Q. Shi, L. H. Liu, L. D. Deng and Y. Lu, Polym. Chem., 2017,
8, 1138-1145. (c) G. H. Aryal, L. M. Huang and K. W. Hunter, RSC Adv.,
2016, 6, 76448-76452.
17 Q. Cui, X. Wang, Y. Yang, S. Li, L. Li, and S. Wang, Chem. Mater., 2016, 28
,
This work is financially supported from the National Natural
Science Foundation of China (Grants 21675106), Natural
Science Basic Research Plan in Shaanxi Province of China
(Grant 2017JM2019), the 111 Project (B14041).
4661–4669.
18 W. L. Brooks and B. S. Sumerlin, Chem. Rev., 2016, 116, 1375-1397.
19 Y. Wu, F. Xiao, Z. Wu and R. Yu, Anal. Chem., 2017, 89, 2852-2858.
20 D. Maity, M. Li, M. Ehlers and C. Schmuck, Chem. Commun., 2016, 53
208-211.
,
21 (a) J. Li, L. L. Liu, P. G. Wang, Y. Yang and J. B. Zheng, Sensor. Actuat. B-
Chem., 2014, 198, 219-224. (b) Y. Egawa, T. Seki, S. Takahashi and J. Anzai,
Notes and references
Mat. Sci. Eng. C-Mater., 2011, 31, 1257
Anzai, Langmuir, 2005, 21, 5102-5107.
–1264. (c) S. Takahashi and J.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins