Table 1 Double acylation of methyl propargyl ether
Entry “Cu”
Base
Yield of 5a (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
CuCN
CuI
CuBr
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
56
42
52
54
56
57
0
Scheme 4 A possible mechanism for the reaction of unactivated
alkynes.
CuCl
7. The g1-complex would transfer the acyl moiety more readily
to copper. The resulting copper reagent 8 would seem to be
able to resist hydrolysis, and effects acylcupration to yield the
vinylic copper compound 9, which would be readily hydrolyzed.6
Further addition of an acyl moiety would afford doubly acylated
products.
This work was supported by Grants-in-Aid for Scientific
Research and COE Research from the Ministry of Education,
Culture, Sports, Science and Technology, Government of Japan.
We thank Professor Masaki Shimizu (Department of Material
Chemistry, Kyoto University) for generous help with the X-ray
crystallographic analysis. Z.H. acknowledges JSPS for financial
support.
CuOAc
CuSPh
Cu(OAc)2
Cu(OTf)2
CuO
0
57
39
73
51
68
66
58
66
18
6
CuO2
Cu (Aldrich)a
Cu (Aldrich, nanosize)b Et3N
Cu (Wako)c
Cu (Kanto)d
Cu (Merck)e
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Cu (Aldrich)
Et3N
Et3N
Et3N
Et2NH
PrNH2
NH3
Pyridine
Imidazole
DBU
0
0
14
References
1-Methylpiperidine 49
iPr2NEt
DMAP
K2CO3
60
31
39
1 (a) R. W. Saalfrank, Acyl Anionen und deren Derivate in Methoden der
Organischen Chemie, Houben-Weyl, Thieme, 1993, vol. E-19d, p. 567;
(b) Y. Hanzawa, K. Narita, M. Yabe and T. Taguchi, Tetrahedron, 2002,
58, 10429; (c) E. Shirakawa, Y. Nakao, H. Yoshida and T. Hiyama,
J. Am. Chem. Soc., 2000, 122, 9030; (d) P. C. B. Page, S. S. Klair and
S. Rosenthal, Chem. Soc. Rev., 1990, 19, 195; (e) A. Inoue, J. Kondo,
H. Shinokubo and K. Oshima, J. Am. Chem. Soc., 2001, 123, 11109.
2 (a) K. Mashima, H. Haraguchi, A. Ohyoshi, N. Sakai and H. Takaya,
Organometallics, 1991, 10, 2731; (b) A. Kasatkin, T. Yamazaki and F.
Sato, Angew. Chem., Int. Ed. Engl., 1996, 35, 1966; (c) N. T. Kablaoui,
F. A. Hicks and S. L. Buchwald, J. Am. Chem. Soc., 1997, 119, 4424;
(d) M. Pankowski, C. Cabestaing and G. Jaouen, J. Organomet. Chem.,
1996, 516, 11; (e) E. J. M. de Boer, L. C. ten Cate, A. G. J. Staring and
J. H. Tauben, J. Organomet. Chem., 1979, 181, 61; (f) B. Demerseman,
G. Bouquet and M. Bigorgne, J. Organomet. Chem., 1975, 93, 199;
(g) G. Fachinetti, C. Floriani and H. Stoeckli-Evans, J. Chem. Soc.,
Dalton Trans., 1977, 2297; (h) P. Hofmann, P. Stauffert, K. Tatsumi, A.
Nakamura and R. Hoffmann, Organometallics, 1985, 4, 404; (i) L. B.
Kool, M. D. Rausch, H. G. Alt, M. Herberhold, B. Honold and U.
Thewalt, J. Organomet. Chem., 1987, 320, 37; (j) W. E. Crowe and
A. T. Vu, J. Am. Chem. Soc., 1996, 118, 1557.
a Cat. no. 203122-10G, 99.999%. b Cat. no. 48392-3, nanosize activated
powder, >99.9% c Cat. no. 031-03992, >99.85%. d Cat. no. 07439-33,
>99.5%. e Cat. no. 1.02703.0250, >99.7%.
Table 2 Double acylation of alkynes
Entry
R
Product
Yield (%)
1
2
3
4
5
CH2OH
5b
5c
5d
5e
5f
42
CH2OSitBuMe2
Ph
trace
28
3 H. A. Martin and F. Jellinek, J. Organomet. Chem., 1968, 12, 149.
p-MeOC6H4
37
43
1
4 Spectral data for 1a: IR 1566 cm−1; H NMR (d/ppm, CDCl3) 2.54
nC6H13
(s, 3H), 5.84 (s, 10H), 7.49 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.1 Hz,
2H); 13C NMR (d/ppm, CDCl3) 22.44, 110.40, 130.17, 130.43, 130.78,
147.16, 282.23.
underwent monoacylation to afford 6 regioselectively in good
yield (Scheme 3).
5 Crystal data for the bromide analogue of 1a: formula, C18H17BrOTi
¯
˚
(FW = 377.13), orange blocks, triclinic, P1, a = 7.7237(7) A, b =
◦
◦
˚
˚
9.8885(9) A, c◦ = 11.0929(10) A, a = 81.444(2) , b = 70.937(2) ,
3
˚
c = 89.529(2) , V = 791.12(12) A , Z = 2, T = 293 K; no. of
reflections measured: 4848, observed: 3431 (I > 2.00r(I)), R1 =
0.0335 (I > 2.00r(I)), wR2 = 0.0892 (I > 2.00r(I)), R1 = 0.0417 (all
data), wR2 = 0.0926 (all data). CCDC reference number 265208. See
http://www.rsc.org/suppdata/ob/b5/b503117f/ for crystallographic
data in CIF or other electronic format.
Scheme 3 Addition to ethyl ethynyl ether.
6 (a) D. Seyferth and R. C. Hui, J. Am. Chem. Soc., 1985, 107, 4551;
(b) D. Seyferth and R. C. Hui, Tetrahedron Lett., 1986, 27, 1473;
(c) B. H. Lipshutz and T. R. Elworthy, Tetrahedron Lett., 1990, 31,
477; (d) T. Tsuda, M. Miwa and T. Saegusa, J. Org. Chem., 1986, 44,
3734; (e) N.-S. Li, S. Yu and G. W. Kabalka, Organometallics, 1999,
18, 1811.
The exact mechanism of the acylation reaction, especially the
roles of water and triethylamine, is not clear at this stage. As
outlined in Scheme 4, a combination of triethylamine and water
could transform 1a to a putative g1-acyltitanium complex such as
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 6 2 2 – 1 6 2 3
1 6 2 3