Journal of the American Chemical Society
Page 6 of 7
1
2
3
4
5
6
7
8
9
(1) (a) Orgel, L. E.; Prebiotic chemistry and the origin of the RNA world.
(12) MacCulloch, T.; Buchberger, A.; Stephanopoulos, N.; Emerging ap-
plications of peptide-oligonucleotide conjugates: Bioactive scaffolds, self-as-
sembling systems, and hybrid nanomaterials. Org. Biomol. Chem. 2019, 17,
1668–1682.
(13) Noda, H.; Bode, J. W.; Synthesis of chemically and configurationally
stable monofluoro acylboronates: Effect of ligand structure on their for-
mation, properties, and reactivities. J. Am. Chem. Soc. 2015, 137, 3958–3966.
(14) Noda, H.; Bode, J. W.; Synthesis and reactivities of monofluoro acyl-
boronates in chemoselective amide bond forming ligation with hydroxyla-
mines. Org. Biomol. Chem. 2015, 14, 16–20.
(15) Another candidate reaction would be certain Wittig reactions of sta-
bilized phosphonium ylides with N-sulfonyl imines. Fang, F.; Li, Y.; Tian, S.
K.; Stereoselective olefination of N-sulfonyl imines with stabilized phospho-
nium ylides for the synthesis of electron-deficient alkenes. Eur. J. Org. Chem.
2011, 1084–1091.
(16) Heinisch, T.; Ward, T. R.; Artificial metalloenzymes based on the
biotin-streptavidin technology: Challenges and opportunities. Acc. Chem.
Res. 2016, 49, 1711–1721.
(17) Sadhu, K. K.; Eierhoff, T.; Römer, W.; Winssinger, N.; Photoreduc-
tive uncaging of fluorophore in response to protein oligomers by templated
reaction in vitro and in cellulo. J. Am. Chem. Soc. 2012, 134, 20013–20016.
(18) The corresponding kinase-templated version of the reaction was re-
cently reported as well. Saarbach, J.; Lindberg, E.; Folliet, S.; Georgeon, S.;
Hantschel, O.; Winssinger, N.; Kinase-templated abiotic reaction. Chem. Sci.
2017, 8, 5119–5125.
(19) Freitag, S.; LeTrong, I.; Klumb, L.; Stayton, P. S.; Stenkamp, R. E.;
Structural studies of the streptavidin binding loop. Protein Sci. 1997, 6,
1157–1166.
(20) (a) Weber, P; Ohlendorf, D. H.; Wendolosky, J. J.; Salemme, F. R.;
Structural origins of high-affinity biotin binding to streptavidin. Science
1989, 243, 85–88. (b) Hirsch, J. D.; Eslamizar, L.; Filanoski, B. J.; Malekza-
deh, N.; Haugland, R. P.; Beechem, J. M.; Haugland, R. P.; Easily reversible
desthiobiotin binding to streptavidin, avidin, and other biotin-binding pro-
teins: Uses for protein labeling, detection, and isolation. Anal. Biochem.
2002, 308, 343–357. (c) Srisa-Art, M.; Dyson, E. C.; DeMello, A. J.; Edel, J.
B.; Monitoring of real-time streptavidin–biotin binding kinetics using drop-
let microfluidics. Anal. Chem. 2008, 80, 7063–7067.
(21) Fairhead, M.; Krndija, D.; Lowe, E. D.; Howarth, M.; Plug-and-play
pairing via defined divalent streptavidins. J. Mol. Biol. 2014, 426, 199–214.
(22) Noda, H.; Erős, G.; Bode, J. W.; Rapid ligations with equimolar re-
actants in water with the potassium acyltrifluoroborate (KAT) amide for-
mation. J Am Chem Soc 2014, 135, 5611–5614.
Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99–123. (b) Bugg, T. D. H.; Enzymes
are wonderful catalysts. In Introduction to Enzyme and Coenzyme Chemistry;
Wiley, 2012; pp 26–49.
(2) Diederich, F.; Stang, P. J.; Templated organic synthesis. Wiley, Wein-
heim, 2000.
(3) (a) Naylor, R.; Gilham, P. T.; Studies on some interactions and reac-
tions of oligonucleotides in aqueous solution. Biochemistry 1966, 5, 2722–
2728. (b) Orgel, L. E.; Unnatural selection in chemical systems. Acc. Chem.
Res. 1995, 28, 109–118. (c) Gartner, Z. J.; Kanan, M. W.; Liu, D. R.; Expand-
ing the reaction scope of DNA-templated synthesis. Angew. Chem. Int. Ed.
2002, 41, 1796–1800. (d) Gorska, K.; Winssinger, N.; Reactions templated
by nucleic acids: More ways to translate oligonucleotide-based instructions
into emerging function. Angew. Chem. Int. Ed. 2013, 52, 6820–6843.
(4) (a) Long, M. J. C.; Poganik, J. R.; Aye, Y.; On-demand targeting: In-
vestigating biology with proximity-directed chemistry. J. Am. Chem. Soc.
2016, 138, 3610–3622. (b) Amaike, K.; Tamura, T.; Hamachi, I.; Recogni-
tion-driven chemical labeling of endogenous proteins in multi-molecular
crowding in live cells. Chem. Commun. 2017, 53, 11972–11983.
(5) O’Reilly, R. K.; Turberfield, A. J.; Wilks, T. R.; The evolution of DNA-
templated synthesis as a tool for materials discovery. Acc. Chem. Res. 2017,
50, 2496–2509.
(6) (a) Li, X.; Liu, D. R.; DNA-templated organic synthesis: Nature's
strategy for controlling chemical reactivity applied to synthetic molecules.
Angew. Chem. Int. Ed. 2004, 43, 4848–4870. (b) He, Y.; Liu, D. R.; A sequen-
tial strand-displacement strategy enables efficient six-step DNA-templated
synthesis. J. Am. Chem. Soc. 2011, 133, 9972–9975.
(7) (a) Severin, K.; Lee, D. H.; Kennan, A. J.; Ghadiri, M. R.; A synthetic
peptide ligase. Nature 1997, 389, 706–709. (b) Brauckhoff, N.; Hahne, G.;
Yeh, J. T.-H.; Grossmann, T. N.; Protein-templated peptide ligation. Angew.
Chem. Int. Ed. 2014, 53, 4337–4340.
(8) (a) Kent, S. B. H.; Dawson, P. E.; Pines, N. T.; Joyce, G. F.; Ligation
of peptides to oligonucleotides. Chem. Biol. 1996, 3, 49–56. (b) Grossmann,
T. N.; Seitz, O.; Nucleic acid templated reactions: Consequences of probe
reactivity and readout strategy for amplified signaling and sequence selectiv-
ity. Chem. Eur. J. 2009, 15, 6723–6730. (c) McKee, M. L.; Evans, A. C.; Ger-
rard, S. R.; O’Reilly, R. K.; Turberfield, A. J.; Stulz, E.; Peptidomimetic bond
formation by DNA-templated acyl transfer. Org. Biomol. Chem. 2011, 9,
1661–1666. (d) Vázquez, O.; Seitz, O.; Templated native chemical ligation:
Peptide chemistry beyond protein synthesis. J. Pept. Sci. 2014, 20, 78–86. (e)
Reinhardt, U.; Lotze, J.; Zernia, S.; Mörl, K.; Beck-Sickinger, A. G.; Seitz, O.;
Peptide-templated acyl transfer: A chemical method for the labeling of mem-
brane proteins on live cells. Angew. Chem. Int. Ed. 2014, 53, 10237–10241.
(f) Di Pisa, M.; Hauser, A.; Seitz, O.; Maximizing output in RNA-
programmed peptidyl-transfer reactions. ChemBioChem 2017, 18, 872–879.
(9) Grossmann, T. N.; Seitz, O.; DNA-catalyzed transfer of a reporter
group. J. Am. Chem. Soc. 2006, 128, 15596–15597.
(10) Middel, S.; Panse, C. H.; Nawratil, S.; Diederichsen, U.; Native
chemical ligation directed by photocleavable peptide nucleic acid (PNA)
templates. ChemBioChem 2017, 18, 2328–2332.
(11) Recently, an application of the approach to the simultaneous ligation
of several peptide fragments by photocleavable DNA was disclosed. Hayashi,
G.; Yanase, M.; Nakatsuka, Y.; Okamoto, A.; Simultaneous and traceless li-
gation of peptide fragments on DNA scaffold. Biomacromolecules 2019, 20,
1246–1253.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(23) a) Dumas, A. M.; Molander, G. A.; Bode, J. W.; Amide-forming liga-
tion of acyltrifluoroborates and hydroxylamines in water. Angew. Chem. Int.
Ed. 2012, 51, 5683–5686. (b) Saito, F.; Noda, H.; Bode, J. W.; Critical eval-
uation and rate constants of chemoselective ligation reactions for stoichio-
metric conjugations in water. ACS Chem. Biol. 2015, 10, 1026–1033.
(24) Dundas, C. M.; Demonte, D.; Park, S.; Streptavidin-biotin technol-
ogy: Improvements and innovations in chemical and biological applications.
Appl. Microbiol. Biotechnol. 2013, 97, 9343–9353.
(25) For comparison, a bimolecular reaction would require k ~8 M–1 s–1
to achieve 80% conv after 4·104 s uxnder the same reaction conditions
(0.50 µM, 10-fold excess of one reactant), and k ~200 M–1 s–1 when using 1:1
starting materials ratio.
6
ACS Paragon Plus Environment