Journal of the American Chemical Society
Page 4 of 5
A set of electrochemical parameters and kinetic data is
allobet@iciq.es; fmaseras@iciq.es
Notes
1
2
3
4
5
6
7
8
presented in Table 1, together with related data for other Cu
complexes described previously in the literature.8b,14 It is
interesting to observe that for [(L1)Cu]2-and [(L2)Cu]2-
(entries 1-2, Table 1) the rate constants are 3.56 and 3.58 s-1
respectively whereas for [(L3)Cu]2- and [(L4)Cu]2-(entries 3-4,
Table 1) the rate constants decrease by one order of magni-
tude suggesting an important involvement of the electron
transfer process at the rds and a significant stabilization of
the radical cation active species. On the other hand increas-
ing the pH from 11.5 to 12.5 increases the rate constant up to
11.96 s-1.It is also important to realize here that as the
strength of the electron donating group increases the oxida-
tive ruggedness of the radical cation species decreases mani-
festing the existence of a decomposition pathway coupled to
the water oxidation catalysis for complexes [(L3)Cu]2- and
[(L4)Cu]2-. We are focusing at present at ligand design to
improve oxidative stability. Nevertheless the [(L1)Cu]2- is the
most oxidatively rugged Cu-based water oxidation catalyst
reported to date as judged electrochemically by the charge
under the III/II redox wave before and after the electrocata-
lytic wave (see SI). The fastest Cu-based water oxidation
catalysts (WOCs) complex reported, [(bpy)Cu(OH)2], works
under an overpotential of 750 mV at pH =12.5 (see entry 8,
Table 1) whereas the complex [(Py3P)Cu(OH2)] (entry 5,
Table 1) has been reported to work at pH = 8.0 with a rate
constant of 20 s-1 and an overpotential of approx. 500 mV.
Finally a dinuclear complex [Cu2(BPMAN)(μ-OH)]3+ (entry 8,
Table 1) has been reported that works at pH 7, is relatively
slow, 0.6 s-1 and works under an overpotential of 1050 mV.
Clearly more molecular Cu based water oxidation catalysts
are needed in order to understand the factors that allow
rationally building fast complexes with oxidatively rugged
ligands and working ideally at pH 7 and with low overpoten-
tials.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank MINECO (F.M.: Grants CTQ2014-57761-R, A.L.:
CTQ-2013–49075-R, Severo Ochoa ICIQ (SEV-2013-0319)) and
the ICIQ Foundation. I.F-A. also thanks the Severo Ochoa
predoctoral training fellowship (Ref: SVP-2014-068662). P.G-
B. thanks “La Caixa” foundation for a Ph.D. grant.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Surinach, C.;
Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev.
2014, 43, 7501.
(2) (a) Melis, A. Energy Environ. Sci. 2012, 5, 5531. (b) Alstrum-
Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Inorg. Chem. 2005, 44,
6802. (c) Nocera, D. G. Acc. Chem. Res. 2012, 45, 767.
(3) Cox, N.; Pantazis, D. A.; Neese, F.; Lubitz, W. Acc. Chem. Res.
2013, 46, 1588.
(4) (a) Zhou, J.; Xi, W.; Hurst, J. K. Inorg. Chem. 1990, 29, 160. (b)
Radaram, B.; Ivie, J. A.; Singh, W. M.; Grudzien, R. M.; Reibenspies, J.
H.; Webster, C. E.; Zhao, X. Inorg. Chem. 2011, 50, 10564. (c) Hong,
D.; Mandal, S.; Yamada, Y.; Lee, Y.-M.; Nam, W.; Llobet, A.;
Fukuzumi, S. Inorg. Chem. 2013, 52, 9522.
(5) (a) Wang, D.; Ghirlanda, G.; Allen, J. P. J. Am. Chem. Soc. 2014,
136, 10198. (b) Karlsson, E.A.; Lee, B.-L.; Åkermark, T.; Johnston, E.
V.; Kärkäs, M. D.; Sun, J.; Hansson, Ö.; Bäckvall, J.-E.; Åkermark, B.
Angew. Chem. Int. Ed. 2011, 50, 11715. (c) Crabtree, R. H. Chem. Rev.
2015, 115, 127.
(6) (a) Muckerman, J. T.; Polyansky, D. E.; Wada, T.; Tanaka, K.;
Fujita, E. Inorg. Chem. 2008, 47, 1787. (b) Boyer, J. L.; Rochford, J.;
Tsai, M.-K.; Muckerman, J. T.; Fujita, E. Coord. Chem.Rev., 2010, 254,
309.
(7) (a) Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794. (b)
Choudhuri, M. M. R.; Kaim, W.; Sarkar, B.; Crutchley, R. J. Inorg.
Chem. 2013, 52, 11060.
(8) (a) Ruiz, R.; Surville-Barland, C.; Aukauloo, A.; Anxolabehere-
Mallart, E.; Journaux, Y.; Cano, J.; Carmen Munoz, M. J. Chem. Soc.,
Dalton Trans. 1997, 745. (b) Fu, L.-Z.; Fang, T.; Zhou, L.-L.; Zhan, S.-
Z. RSC Advances 2014, 4, 53674.
(9) Ottenwaelder, X.; Aukauloo, A.; Journaux, Y.; Carrasco, R.;
Cano, J.; Cervera, B.; Castro, I.; Curreli, S.; Munoz, M. C.; Rosello, A.
L.; Soto, B.; Ruiz-Garcia, R. Dalton Trans. 2005, 2516.
(10) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. J. Am.
Chem. Soc. 2012, 134, 11235.
(11) Sala, X.; Maji, S.; Bofill, R.; García-Antón, J.; Escriche, L.;
Llobet, A. Acc. Chem. Res. 2014, 47, 504.
(12) Bichler, B.; Glatz, M.; Stoger, B.; Mereiter, K.; Veiros, L. F.;
Kirchner, K. Dalton Trans. 2014, 43, 14517.
(13) (a) Ellis, W.C.; McDaniel, N.D.; Bernhard, S.; Collins, T.J. J.
Am. Chem. Soc. 2010, 132, 10990. b) Liao, R.-Z; Li, X.-C.; Siegbahn,
P.E.M. Eur. J. Inorg. Chem. 2014, 728.
(14) (a) Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. Nat. Chem.
2012, 4, 498. (b) Zhang, M.-T.; Chen, Z.; Kang, P.; Meyer, T. J. J. Am.
Chem. Soc. 2013, 135, 2048. (c) Coggins, M. K.; Zhang, M.-T.; Chen, Z.;
Song, N.; Meyer, T. J. Angew. Chem. Int. Ed. 2014, 53, 12226. (d) Su,
X.-J.; Gao, M.; Jiao, L.; Liao, R.-Z.; Siegbahn, P. E. M.; Cheng, J.-P.;
Zhang, M.-T. Angew. Chem. Int. Ed. 2015, 54, 4909. (e) Pap, J. S.;
Szyrwiel, L.; Sranko, D.; Kerner, Z.; Setner, B.; Szewczuk, Z.; Malinka,
W. Chem. Commun. 2015, 51, 6322.(f) Gerlach, D. L.; Bhagan, S.;
Cruce, A. A.; Burks, D. B.; Nieto, I.; Truong, H. T.; Kelley, S. P.;
Herbst-Gervasoni, C. J.; Jernigan, K. L.; Bowman, M. K.; Pan, S.;
Zeller, M.; Papish, E. T. Inorg. Chem. 2014, 53, 12689. (g) Zhang, T.;
Wang, C.; Liu, S.; Wang, J.-L.; Lin, W. J. Am. Chem. Soc. 2014, 136,
273.
In conclusion we have prepared a family of Cu complexes
that are capable of oxidizing water to dioxygen and whose
rate determining step involves the redox activity of the lig-
and. Further fine tuning of the ligand backbone allows re-
ducing the overpotential for water oxidation in this family of
complexes by more than 500 mV, all the way to a record low
overpotential of 170 mV. In addition DFT analysis puts for-
ward an unprecedented pathway where the O-O bond for-
mation occurs in a two-step one electron processes and
where the peroxo intermediate generated has no formal M-O
bond in sharp contrast with the previous mechanism de-
scribed in the literature.11c The interplay between electrons
being removed from the metal and/or the ligands opens up
new avenues for molecular water oxidation catalyst design.
We are at present focusing our attention on developing fur-
ther families of molecular water oxidation catalysts based on
redox non-innocent and oxidatively rugged ligands.
ASSOCIATED CONTENT
Supporting Information
Procedures and crystallographic data. Cartesian coordinates.
This material is available free of charge via the Internet at
http://pubs.acs.org..
AUTHOR INFORMATION
Corresponding Author
ACS Paragon Plus Environment