Inorganic Chemistry
Article
(17) Tian, T.; Jiang, J.; Ai, L. In situ electrochemically generated
composite-type CoOx/WOx in self-activated cobalt tungstate nano-
structures: implication for highly enhanced electrocatalytic oxygen
evolution. Electrochim. Acta 2017, 224, 551−560.
(18) Feng, J.; Xu, H.; Dong, Y.; Ye, S.; Tong, Y.; Li, G. FeOOH/Co/
FeOOH Hybrid Nanotube Arrays as High-Performance Electro-
catalysts for the Oxygen Evolution Reaction. Angew. Chem. 2016, 128,
3758−3762.
ACKNOWLEDGMENTS
■
K.K. wishes to acknowledge UGC for SRF award. S.K. wishes
to acknowledge the Department of Science and Technology
(DST) for EMR research funding by #EMR/2017/000860 on
May 11th, 2018 and Institute OM Number 18-29-03/(27/
2018)-TTBD-CSIR-CECRI on October 29th, 2018.
(19) Feng, J.; Ye, S.; Xu, H.; Tong, Y.; Li, G. Design and Synthesis of
FeOOH/CeO 2 Heterolayered Nanotube Electrocatalysts for the
Oxygen Evolution Reaction. Adv. Mater. 2016, 28, 4698−4703.
(20) Lu, X.; Gu, L.; Wang, J.; Wu, J.; Liao, P.; Li, G. Bimetal-Organic
Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as
High-Performance Electrocatalysts for Oxygen Evolution Reaction.
Adv. Mater. 2017, 29, 1604437.
(21) Ye, S.; Shi, Z.; Feng, J.; Tong, Y.; Li, G. Activating CoOOH
Porous Nanosheet Arrays by Partial Iron Substitution for Efficient
Oxygen Evolution Reaction. Angew. Chem., Int. Ed. 2018, 57, 2672−
2676.
(22) Karthick, K.; Anantharaj, S.; Karthik, P. E.; Subramanian, B.;
Kundu, S. Self-Assembled Molecular Hybrids of CoS-DNA for
Enhanced Water Oxidation with Low Cobalt Content. Inorg. Chem.
2017, 56, 6734−6745.
(23) Chen, J. S.; Ren, J.; Shalom, M.; Fellinger, T.; Antonietti, M.
Stainless steel mesh-supported NiS nanosheet array as highly efficient
catalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces
2016, 8, 5509−5516.
(24) Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.;
Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W.; Wang, Y. L.;
Hwang, B. J.; Chen, C. C.; Dai, H. Highly Active and Stable Hybrid
Catalyst of Cobalt-Doped FeS2 Nanosheets−Carbon Nanotubes for
Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587−
1592.
(25) Zhao, X.; Zhang, H.; Yan, Y.; Cao, J.; Li, X.; Zhou, S.; Peng, Z.;
Zeng, J. Engineering the Electrical Conductivity of Lamellar Silver-
Doped Cobalt (II) Selenide Nanobelts for Enhanced Oxygen
Evolution. Angew. Chem., Int. Ed. 2017, 56, 328−332.
(26) Zhang, C.; Xin, B.; Duan, S.; Jiang, A.; Zhang, B.; Li, Z.; Hao, J.
Controllable 1D and 2D Cobalt Oxide and Cobalt Selenide
Nanostructures as Highly Efficient Electrocatalysts for the Oxygen
Evolution Reaction. Chem. - Asian J. 2018, 13, 2700−2707.
(27) Carim, A. I.; Saadi, F. H.; Soriaga, M. P.; Lewis, N. S.
Electrocatalysis of the hydrogen-evolution reaction by electro-
deposited amorphous cobalt selenide films. J. Mater. Chem. A 2014,
2, 13835−13839.
REFERENCES
■
(1) Garland, N. L.; Papageorgopoulos, D. C.; Stanford, J. M.
Hydrogen and fuel cell technology: Progress, challenges, and future
directions. Energy Procedia 2012, 28, 2−11.
(2) Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P.
ydrogen and fuel cells: towards a sustainable energy future. Energy
Policy 2008, 36 (12), 4356−4362.
(3) Wendt, H.; Imarisio, G. Nine years of research and development
on advanced water electrolysis. A review of the research programme
of the Commission of the European Communities. J. Appl.
Electrochem. 1988, 18, 1−14.
(4) Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser,
P. The mechanism of water oxidation: from electrolysis via
homogeneous to biological catalysis. ChemCatChem 2010, 2 (7),
724−761.
(5) Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-
free bifunctional heterogeneous catalysts for overall electrochemical
water splitting. J. Mater. Chem. A 2016, 4 (45), 17587−17603.
(6) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F.
Benchmarking heterogeneous electrocatalysts for the oxygen
evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977−16987.
(7) You, B.; Jiang, N.; Sheng, M.; Sun, Y. Microwave vs solvothermal
synthesis of hollow cobalt sulfide nanoprisms for electrocatalytic
hydrogen evolution and supercapacitors. Chem. Commun. 2015, 51,
4252−4255.
(8) Yagi, M.; Tomita, E.; Sakita, S.; Kuwabara, T.; Nagai, K. Self-
Assembly of Active IrO2 Colloid Catalyst on an ITO Electrode for
Efficient Electrochemical Water Oxidation. J. Phys. Chem. B 2005, 109
(46), 21489.
(9) Anantharaj, S.; Kundu, S. Self-Assembly of Active IrO2 Colloid
Catalyst on an ITO Electrode for Efficient Electrochemical Water
Oxidation. Curr. Nanosci. 2017, 13 (4), 333−341.
(10) Ganesan, P.; Sivanantham, A.; Shanmugam, S. Inexpensive
electrochemical synthesis of nickel iron sulphides on nickel foam:
super active and ultra-durable electrocatalysts for alkaline electrolyte
membrane water electrolysis. J. Mater. Chem. A 2016, 4 (42), 16394−
16402.
(11) Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported
cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem.
Soc. 2011, 133 (14), 5587−5593.
(28) Zhang, J. Y.; Lv, L.; Tian, Y.; Li, Z.; Ao, X.; Lan, Y.; Jiang, J.;
Wang, C. Rational Design of Cobalt-Iron Selenides for Highly
Efficient Electrochemical Water Oxidation. ACS Appl. Mater. Interfaces
2017, 9, 33833−33840.
(12) Tran, P. D.; Chiam, S. Y.; Boix, P. P.; Ren, Y.; Pramana, S. S.;
Fize, J.; Artero, V.; Barber, J. Novel cobalt/nickel−tungsten-sulfide
catalysts for electrocatalytic hydrogen generation from water. Energy
Environ. Sci. 2013, 6 (8), 2452.
(13) Zhang, Y.; Gao, T.; Jin, Z.; Chen, X.; Xiao, D. A robust water
oxidation electrocatalyst from amorphous cobalt−iron bimetallic
phytate nanostructures. J. Mater. Chem. A 2016, 4 (41), 15888−
15895.
(29) Li, S.; Peng, S.; Huang, L.; Cui, X.; Al-Enizi, A. M.; Zheng, G.
Carbon-Coated Co3+-Rich Cobalt Selenide Derived from ZIF-67 for
Efficient Electrochemical Water Oxidation. ACS Appl. Mater. Interfaces
2016, 8, 20534−20539.
(30) Masud, J.; Swesi, A. T.; Liyanage, W. P. R.; Nath, M. Cobalt
Selenide Nanostructures: An Efficient Bifunctional Catalyst with High
Current Density at Low Coverage. ACS Appl. Mater. Interfaces 2016,
8, 17292−17302.
(14) Yang, L.; Xie, L.; Ge, R.; Kong, R.; Liu, Z.; Du, G.; Asiri, A. M.;
Yao, Y.; Luo, Y. Core−Shell NiFe-LDH@ NiFe-Bi Nanoarray: In Situ
Electrochemical Surface Derivation Preparation toward Efficient
Water Oxidation Electrocatalysis in near-Neutral Media. ACS Appl.
Mater. Interfaces 2017, 9 (23), 19502−19506.
(15) Liu, P.-F.; Zhou, J.-J.; Li, G.-C.; Wu, M.-K.; Tao, K.; Yi, F.-Y.;
Zhao, W.-N.; Han, L. A hierarchical NiO/NiMn-layered double
hydroxide nanosheet array on Ni foam for high performance
supercapacitors. Dalt. Trans. 2017, 46 (23), 7388−7391.
(16) Stern, L.-A.; Hu, X. Enhanced oxygen evolution activity by
NiOx and Ni (OH)2 nanoparticles. Faraday Discuss. 2014, 176, 363−
379.
(31) Wang, Z.; Li, J.; Tian, X.; Wang, X.; Yu, Y.; Owusu, K. A.; He,
L.; Mai, L. Porous Nickel-Iron Selenide Nanosheets as Highly
Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Appl.
Mater. Interfaces 2016, 8, 19386−19392.
(32) Swesi, A. T.; Masud, J.; Liyanage, W. P. R.; Umapathi, S.;
Bohannan, E.; Medvedeva, J.; Nath, M. Textured NiSe2 Film:
Bifunctional Electrocatalyst for Full Water Splitting at Remarkably
Low Overpotential with High Energy Efficiency. Sci. Rep. 2017, 7, 1−
11.
(33) Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen,
M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel−Cobalt
Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni
G
Inorg. Chem. XXXX, XXX, XXX−XXX