Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
acetylene positive for electron-rich group-substituted phenyl 8. J. Xuan and W.-J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828-
DOI: 10.1039/C9CC01365B
halide attack, which is opposite to our observation for electron-
6838.
rich halides. Macmillan et al studied the aryl halides and 9. K. Zeitler, Angew. Chem. Int. Ed., 2009, 48, 9785-9789.
carboxylic acids and found that energy transfer from an iridium 10. G. Zhao, S. Kaur and T. Wang, Org. Lett., 2017, 19, 3291-3294.
sensitizer produces an excited-state nickel complex, which 11. Y. Liu, B. Wang, X. Qiao, C.-H. Tung and Y. Wang, ACS Catalysis,
promotes the coupling. In our study, we observed that
compound 2 can also catalyze the coupling (entry 7, Table 1) 12. T. Wang, H. Xie, L. Liu and W.-X. Zhao, J. Organomet. Chem. ,
primarily due to the poor absorption in the visible region. In the 2016, 804, 73-79.
complex 1, the fluorescence of BODIPY was completely 13. J.-J. Zhong, C. Yang, X.-Y. Chang, C. Zou, W. Lu and C.-M. Che,
quenched, indicating the high yield of triplet state. In addition, Chem. Commun., 2017, 53, 8948-8951.
moderate yield of product was observed when compound 1 was 14. S. Dadashi-Silab, S. Doran and Y. Yagci, Chem. Rev., 2016, 116,
replaced by 2 and 3. With this information, we believe the 10212–10275.
2017, 7, 4093-4099.
reaction occurred most likely via an energy transfer. This energy 15. W. Liu, L. Li and C.-J. Li, Nat Commun, 2015, 6, 6256.
transfer mechanism is also consistent with the substituent 16. T. Koike and M. Akita, Inorg. Chem. Front., 2014, 1, 562-576.
effect on aryl halides from Macmillan’s study. We are 17. H. Huo, X. Shen, C. Wang, L. Zhang, P. Rose, L.-A. Chen, K.
currently expanding the scope of the substrates, aiming to
elucidate the detailed mechanisms.
Harms, M. Marsch, G. Hilt and E. Meggers, Nature, 2014, 515,
100-103.
In summary, a BODIPY functionalized Pd(II) complex has 18. J. Sun, F. Zhong, X. Yi and J. Zhao, Inorg. Chem., 2013, 52, 6299-
been used successfully as a photocatalyst for the Sonogashira 6310.
C-C coupling reactions for the first time. Under a commercial 19. J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
LED illumination, as high as 92% yield of cross-coupling product 2011, 40, 102-113.
was obtained after 24 h reaction at room temperature. Given 20. A. Elhage, A. E. Lanterna and J. C. Scaiano, ACS Sustainable
the similar reaction mechanism of many other coupling Chem. Eng., 2018, 6, 1717-1722.
reactions, this study opens a new window for the development 21. B. Wang, X. Guo, G. Jin and X. Guo, Catal. Commun., 2017, 98,
of efficient and environmentally friendly catalysts for C-C 81-84.
coupling reactions, which could benefit petroleum industry and 22. S. Kim, J. Rojas-Martin and F. D. Toste, Chem. Sci., 2016, 7, 85-
research community dramatically.
88.
2
3. K. Mori, M. Kawashima and H. Yamashita, Chem. Commun.,
2014, 50, 14501-14503.
We thank the American Chemical Society Petroleum Research
Funds (54579-UR3) for financial support of this work. HH thanks 24. S. Arunachalam and H. K. Chu, Adv. Synth. Catal., 2012, 354,
Prof. Zhiqiang Yan (Department of Chemistry & Biochemistry, 3421-3427.
EIU) for assistance in obtaining P NMR, Prof. Mark McGuire 25. M. Osawa, H. Nagai and M. Akita, Dalton Trans., 2007, 827-
Department of Chemistry & Biochemistry, EIU) for assistance in 829.
obtaining CV data, and Prof. Dan Sheeran (Department of 26. A. Sagadevan and K. C. Hwang, Adv Syn. & Catal., 2012, 354,
3
1
(
Chemistry & Biochemistry, EIU) for assistance in obtaining GC-
MS data.
3421-3427.
27. M. Yanagida, L. P. Singh, K. Sayama, K. Hara, R. Katoh, A. Islam,
H. Sugihara, H. Arakawa, M. K. Nazeeruddin and M. Grätzel,
Dalton Trans, 2000, 2817-2822.
Notes and references
2
8. L. Si, H. He and K. Zhu, New. J. Chem., 2014, 38, 1565-1572.
‡
Footnotes relating to the main text should appear here. These 29. R. Chinchilla and C. Nájera, Chem. Soc. Rev., 2011, 40, 5084-
might include comments relevant to but not central to the matter
under discussion, limited experimental and spectral data, and
crystallographic data.
5121.
3
3
0. R. Chinchilla and C. Nájera, Chem. Rev., 2007, 107, 874-922.
1. M. García-Melchor, M. C. Pacheco, C. Nájera, A. Lledós and G.
Ujaque, ACS Catalysis, 2012, 2, 135-144.
2. M. Gazvoda, M. Virant, A. Pevec, D. Urankar, A. Bolje, M.
Kočevar and J. Košmrlj, Chem. Commun., 2016, 52, 1571-1574.
3. M. Gazvoda, M. Virant, B. Pinter and J. Košmrlj, Nature
Communications, 2018, 9, 4814.
4. M. A. Fredricks and K. Köhler, Catal. Lett., 2009, 133, 23.
5. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891-4932.
6. J. P. Stambuli, C. D. Incarvito, M. Bühl and J. F. Hartwig, J. Am.
Chem. Soc., 2004, 126, 1184-1194.
1
2
.
.
R. Chinchilla and C. Najera, Chem Rev, 2014, 114, 1783-1826.
T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147-
3
3
1
169.
P. Sehnal, R. J. K. Taylor and I. J. S. Fairlamb, Chem. Rev.,
010, 110, 824-889.
3
.
2
3
3
3
4
5
.
.
L. Yin and J. Liebscher, Chem. Rev., 2006, 107, 133-173.
K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1
975, 16, 4467-4470.
M. Karak, L. C. A. Barbosa and G. C. Hargaden, RSC Adv., 2014,
, 53442-53466.
N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116,
0075-10166.
6
7
.
.
3
3
7. J. P. Stambuli, M. Bühl and J. F. Hartwig, J. Am. Chem. Soc.,
4
2
002, 124, 9346-9347.
8. E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker and D.
W. C. MacMillan, Science, 2017, 355, 380-385.
1
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins