The solution state encapsulation of fluoride in 1d and the
side-cleft binding of KF in 2 has further been confirmed by 2D
NOESY NMR experiments of the isolated complexes and free
receptor (L) in DMSO-d6. As depicted in Fig. 8b, the free
receptor molecule shows several strong NOESY signals
Acknowledgements
GD acknowledges DST (SR/S1/IC-01/2008) and CSIR (01-2235/
08/EMR-II), New Delhi India for financial support and DST-
FIST for the single crystal X-ray diffraction facility. SKD and
BD acknowledges IIT Guwahati, India for their fellowship.
…
between the amide-NH and aryl-CH protons (NH CH) and
…
between the identical set of –NH protons (NH NH) and
…
–CH protons (CH CH). However, in complex 1d, the
References
…
NH CH through-space NOE coupling was found to be
1 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
VCH, Weinheim, Germany, 1995; (b) J. W. Steed and J. L. Atwood,
Supramolecular Chemistry: An Introduction, Wiley, Chichester, U.K.,
2000; (c) P. D. Beer, P. A. Gale and D. K. Smith, Supramolecular
Chemistry, Oxford University Press, Oxford, U.K., 1999; (d) J. L.
Sessler, P. A. Gale and W.-S. Cho, Anion Receptor Chemistry;
Monographs in Supramolecular Chemistry, ed. J. F. Stoddart, RSC
Publishing, Cambridge, U.K., 2006; (e) G. W. Gokel. in
Comprehensive Supramolecular Chemistry: Molecular Recognition,
Receptors for Cationic Guests; ed. J.-M. Lehn, J. L. Atwood, J. E. D.
Davies, D. D. MacNicol, F. Vogtle, Pergamon, Oxford, U.K., 1996,
Vol. 1.
absent (Fig. 8c), indicating the binding and encapsulation of
fluoride within the tripodal scaffold in a 1 : 1 host–guest
stoichiometry, an observation which is also supported by the
X-ray structure of the F2-encapsulated complex (1d).
Furthermore, the interactions between the identical set of
…
–NH protons (NH NH) become significantly weaker while
…
the CH CH signals remain (although less intense), indicating
a conformational change in the receptor due to the encapsula-
tion of the fluoride anion (Fig. 8c). In contrast to 1d, strong
2 (a) P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486;
(b) P. A. Gale, Coord. Chem. Rev., 2003, 240, 191; (c) P. A. Gale and
R. Quesada, Coord. Chem. Rev., 2006, 250, 3219; (d) P. A. Gale, S. E.
Garcia-Garrido and J. Garric, Chem. Soc. Rev., 2008, 37, 151; (e) S.
Kubik, Chem. Soc. Rev., 2010, 39, 3648; (f) R. Custelcean, Chem. Soc.
Rev., 2010, 39, 3675; (g) T. H. Rehm and C. Schmuck, Chem. Soc.
Rev., 2010, 39, 3597; (h) P. R. Brotherhood and A. P. Davis, Chem.
Soc. Rev., 2010, 39, 3633; (i) L. A. Joyce, S. H. Shabbir and E. V.
Anslyn, Chem. Soc. Rev., 2010, 39, 3621.
3 (a) R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103,
4419; (b) K. Bowman-James, Acc. Chem. Res., 2005, 38, 671; (c) V.
Amendola, D. Esteban-Gomez, L. Fabbrizzi and M. Licchelli, Acc.
Chem. Res., 2006, 39, 343; (d) P. A. Gale, Acc. Chem. Res., 2006, 39,
465; (e) E. Quinlan, S. E. Matthews and T. Gunnlaugsson, J. Org.
Chem., 2007, 72, 7497.
4 (a) M. Cametti and K. Rissanen, Chem. Commun., 2009, 2809; (b) M.
Arunachalam and P. Ghosh, Chem. Commun., 2009, 5389; (c) M.
Arunachalam and P. Ghosh, Inorg. Chem., 2010, 49, 943; (d) S. O.
Kang, J. M. Llinares, D. Powell, D. VanderVelde and K. Bowman-
James, J. Am. Chem. Soc., 2003, 125, 10152; (e) D. D. Kemp and
M. S. Gordon, J. Phys. Chem. A, 2005, 109, 7688; (f) C.-G. Zhan and
D. A. Dixon, J. Phys. Chem. A, 2004, 108, 2020.
…
…
…
NOESY signals involving NH CH, NH NH and CH CH
through-space interactions have been observed in complex 2
(similar to L) which indeed suggests that fluoride encapsula-
tion is not the prevalent mode of binding with KF in solution
as well. However, it is important to mention that, unlike the
solid-state structures, the receptor molecule exhibits C3v
symmetry in solution where the tripodal side arms are
equivalent with each other and interacts significantly among
the different sets of protons. Upon binding and encapsulation
of the fluoride by the –NH and –CH hydrogen bonds, the
interactions between the different sets of protons is hindered,
due to which they are either found to be absent or become
significantly weaker in 1d. Similar 2D NOESY NMR
experiments have recently been performed by our group and
others to demonstrate the encapsulation of anions by urea-
functionalized tripodal scaffolds.22
5 (a) F. Hof, S. L. Craig, C. Nuckolls and J. Rebek, Jr., Angew. Chem.,
Int. Ed., 2002, 41, 1488; (b) S. R. Seidel and P. J. Stang, Acc. Chem.
Res., 2002, 35, 972; (c) M. Fujita, M. Tominaga, A. Hori and B.
Therrien, Acc. Chem. Res., 2005, 38, 369; (d) Y. Yamauchi and M.
Fujita, Chem. Commun., 2010, 46, 5897; (e) K. Ikemoto, Y. Inokuma
and M. Fujita, Angew. Chem., Int. Ed., 2010, 49, 5750; (f) M.
Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem., Int. Ed.,
2009, 48, 3418.
6 (a) T. Martin, U. Obst and J. Rebek, Jr., Science., 1998, 281, 1842; (b)
J. Rebek, Jr., Chem. Commun., 2000, 637; (c) B. M. O’Leary, T.
Szabo, N. Svenstrup, C. A. Schalley, A. Lutzen, M. Schafer and J.
Rebek, Jr., J. Am. Chem. Soc., 2001, 123, 11519; (d) M. W. Heaven,
G. W. V. Cave, R. M. McKinlay, J. Antesberger, S. J. Dalgarno,
P. K. Thallapally and J. L. Atwood, Angew. Chem., Int. Ed., 2006, 45,
6221; (e) M. Alajarin, R.-A. Orenes, J. W. Steed and A. Pastor,
Chem. Commun., 2010, 46, 1394; (f) M. Alajarin, A. Pastor, R.-A.
Orenes, A. E. Goeta and J. W. Steed, Chem. Commun., 2008, 3992;
(g) H. Mansikkamaki, M. Nissinen and K. Rissanen, Chem.
Commun., 2002, 1902; (h) R. Custelcean, P. Remy, P. V. Bonnesen,
D.-E. Jiang and B. A. Moyer, Angew. Chem., Int. Ed., 2008, 47, 1866;
(i) C. Jia, B. Wu, S. Li, X. Huang, Q. Zhao, Q.-S. Li and X.-J. Yang,
Angew. Chem., Int. Ed., 2011, 50, 486; (j) N. Busschaert, M. Wenzel,
M. E. Light, P. Iglesias-Hernandez, R. Perez-Tomas and P. A. Gale,
J. Am. Chem. Soc., 2011, 133, 14136; (k) S. K. Dey and G. Das,
Dalton Trans., 2011, 40, 12048.
Conclusion
In summary, we have structurally authenticated the binding
discrepancy of the fluoride ion in quaternary ammonium
(TBAF) and alkali (KF) salts by a p-acidic tris(amide)
receptor, L. The binding discrepancy has also been exemplified
in the solution state by 1H NMR and 2D NOESY NMR
experiments of the isolated crystals of 1d and 2, which were
subsequently compared to the free receptor. The encapsulation
of F2 in complex 1d and the side-cleft binding of KF in
complex 2 can be captured by following the change in chemical
shift of the –NH and ortho-CH resonances in the 1H NMR
experiments and the disappearance of through-space interac-
tions between the –NH and ortho-CH protons of 1d in the 2D
NOESY NMR experiments when compared to the free
receptor and complex 2. Furthermore, a detailed Hirshfeld
surface analysis of the solvated crystals of L and that of
complex 2 provides a better understanding of the identical
types of supramolecular interactions prevalent in the crystal
structures of L?DMF/L?DMSO and
2 which eventually
7 (a) G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in
Structural Chemistry and Biology, Oxford University Press, New
York, NY, 1999; (b) P. Gamez, T. J. Mooibroek, S. J. Teat and J.
Reedijk, Acc. Chem. Res., 2007, 40, 435; (c) B. L. Schottel, H. T.
Chifotides and K. R. Dunbar, Chem. Soc. Rev., 2008, 37, 68; (d) B. P.
Hay and V. S. Bryantsev, Chem. Commun., 2008, 2417; (e) R. J. Gotz,
governs the same crystal packing in the structure. Thus,
receptor L provides an ideal example of a flexible F2 binding
host which adapts its conformation to respond to the demands
of the specific countercation.
This journal is ß The Royal Society of Chemistry 2012
CrystEngComm, 2012, 14, 5305–5314 | 5313