ˇ
228
M. Casny´ et al. / Inorganica Chimica Acta 355 (2003) 223Á228
/
[2] E.G.M. Vollenbrock, L.H. Simons, J.W.P van Schijndeln, P.
Barnett, M. Balzar, H.L. Dekker, C. van de Linden, R. Wever,
Biochem. Soc. Trans. 23 (1995) 267.
mately 1:3. In strongly acidic as well as in neutral media,
partial decomposition occurs, and the ratio I:II increases
to 1:2. The amount of I (23Á32%) varies only slightly;
/
[3] J.M. Arber, E. de Boer, C.D. Garner, S.S. Hasnain, R. Wever,
Biochemistry 28 (1989) 7968.
the decomposition products are formed preferentially
from II.
In the 51V NMR spectrum of 1 in water in the pH
[4] A. Messerschmidt, R. Wever, Proc. Natl. Acad. Sci. USA:
Biochem. 93 (1996) 392.
[5] A. Messerschmidt, L. Prade, R. Wever, Biol. Chem. 378 (1997)
309.
range 5.4Á7.5, the predominant monoperoxo-cmaa
/
species I and II partially decompose to a monomeric
peroxo-free vanadate [VO2cmaa]2ꢂ (V1-cmaa) with d at
[6] M. Bhattacharjee, S. Ganguly, J. Mukherjee, J. Chem. Res. (S) 2
(1995) 80.
[7] V. Vergopoulos, W. Priebsch, M. Fritzsche, D. Rehder, Inorg.
Chem. 32 (1993) 1844.
about ꢂ
/
542 to ꢂ
/
548 ppm, and aqua-diperoxovana-
date [VO(O2)2H2O]ꢂ (DPV), dꢀ
/
ꢂ/690 ppm, Eq. (1):
[8] K. Kanamori, K. Nishida, N. Miyata, Ken-ichi-Okamoto, Chem.
Lett. (1998) 1267.
3[VO(O2)cmaa]2ꢂ ꢁOHꢂ ꢁH2O 0[VO(O2)2H2O]ꢂ
ꢁ2[VO2cmaa]2ꢂ ꢁHcmaa2ꢂ ꢁ(1=2)O2
[9] D.C. Crans, F. Jiang, J. Chen, O.P. Anderson, M.M. Miller,
Inorg. Chem. 36 (1997) 1038.
(1)
[10] F.W.B. Einstein, R.J. Batchelor, S.J. Angus-Dunne, A.S. Tracey,
Inorg. Chem. 35 (1996) 1680.
As suggested by the counter-running curves for II and
V1-cmaa in Fig. 2, [VO2cmaa]2ꢂ forms, in the pH range
[11] D.C. Crans, H. Holst, A.D. Keramidas, D. Rehder, Inorg. Chem.
34 (1995) 2524.
3.8Á
the pH range 2Á
present in solution which, on acidification (pH 1.1Á
partially decompose to form the aqua-monoperoxova-
nadium species [VO(O2)(H2O)y]ꢀ with dꢀ
539 ppm,
Eq. (2):
/
5, at the expense of the less stable endo form II. In
3.7, only the diastereomers I and II are
1.7)
[12] M. Weyand, H.-J. Hecht, M. Kiess, M.-F. Liaud, H. Vilter, D.
Schomburg, J. Mol. Biol. 293 (1999) 595.
ˇ
[13] P. Schwendt, P. .Svanca´rek, I. Smatanova´, J. Marek, J. Inorg.
Biochem. 80 (2000) 59.
/
/
/
ꢂ
/
[14] (a) Y. Shechter, G. Eldberg, A. Shisheva, D. Gefel, N. Sekar,
Quian Sun, R. Bruck, E. Gershonov, D.C. Crans, Y. Goldwasser,
M. Fridkin, Jimping Li. in: A.S. Tracey, D.C. Crans (Eds.), ACS
[VO(O2)cmaa]2ꢂ ꢁxHꢁ ꢁyH2O 0[VO(O2)(H2O)y]ꢁ
ꢁHxcmaa(3ꢂx)ꢂ
Symposium Series 711, Washington DC (1998) 308Á315.;
/
(b) D. Rehder, J. CostaPessoa, C.F.G.C. Geraldes, T. Kabanos,
T. Kiss, B. Meier, G. Micera, L. Pettersson, M. Rangel, A.
Salifoglou, I. Turel, D. Wang, J. Biol. Inorg. Chem. 7 (2002) 384.
[15] M. Siva´k, D. Joniakova´, P. Schwendt, Trans. Met. Chem. 18
(1993) 304.
(2)
The 51V NMR spectra of 1 registered at 278 K and pH
3 (Table 2) revealed a slight shift of d(51V) for I (ꢂ
5900 596 ppm) and II (ꢂ6000 602 ppm) and a
/
/
ꢂ
/
/
/
ꢂ
/
[16] L. Kuchta, M. Siva´k, F. Pavelcˇ´ık, J. Chem. Res. (S) (1993) 393.
[17] M. Siva´k, J. Tyrsˇelova´, F. Pavelcˇ´ık, J. Marek, Polyhedron 15
(1996) 1057.
broadening of both signals by more than 110 Hz when
compared with 293 K. The decreased temperature did
not lead to an improved resolution and confirmation of
the existence of isomers (Fig. 1). While the intensity
ratio is 1:3 at 293 K and in the pH range giving rise to a
two component (I and II) spectrum, this ratio is 1:1 at
273 K shortly after dissolving the complex in water, and
then changes to 1:2 within an hour remaining constant
therafter.
[18] M. Siva´k, V. Sucha´, L. Kuchta, J. Marek, Polyhedron 18 (1998)
93.
[19] (a) G. Colomb, K. Bernauer, Helv. Chim. Acta 60 (1977) 459;
(b) G. Colomb, K. Bernauer, Helv. Chim. Acta 60 (1977) 468.
[20] F. Pavelcˇ´ık, J. Maderova´, J. Marek, unpublished results.
[21] R.V. Snyder, R.J. Angelici, J. Inorg. Nucl. Chem. 35 (1973) 523.
[22] IR spectrum of K2Hcmaa ×
517 m, 550 s, 613 s, 638 m, 758 m, 775 s, 855 w, 870 w, 918 w, 950
w, 996Á1075 b, 1183 vs, 1228 vs, 1255 vs, 1294 vs, 1350Á1380 b,
1503 vs, 1585 vs, 1625 vs, 1705 s.
/
2H2O in nujol, in cmꢂ1: 453 m, 472 s,
/
/
Efforts to support these findings based on 51V NMR
by running 13C NMR spectra were counter-acted by the
instability of the systems. At pH 3 and 277 K,
[23] IR spectrum of NBu4Br in nujol, in cmꢂ1: 725 sh, 737 s, 880 m,
900 vs, 920 vs, 994 m, 1034m, 1057 m, 1111 m, 1240 w.
[24] G.J. Colpas, B.J. Hamstra, J.W. Kampf, V.L. Pecoraro, J. Am.
Chem. Soc. 118 (1996) 3469.
decomposition became effective after 2.5Á3 h.
/
[25] D.T. Sawyer, J.M. Mc Kinnie, J. Am. Chem. Soc. 82 (1960) 4191.
[26] P. Schwendt, M. Siva´k, A.E. Lapshin, Y.I. Smolin, Y.F. Shepelev,
D. Gyepesova´, Trans. Met. Chem. 19 (1994) 34.
Acknowledgements
ˇ
[27] M. .Casny´, D. Rehder, Chem. Commun. (2001) 921.
[28] K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, fifth ed., Willey, New York, 1997.
[29] C. Djordjevic, S.A. Craig, E. Sinn, Inorg. Chem. 24 (1985) 1281.
[30] F.W.B. Einstein, K.J. Batchelor, S.J. Angus-Dunne, A.S. Tracey,
Inorg. Chem. 35 (1996) 1680.
This research was financially supported by Ministry
of Education of the Slovak Republic (Grant 1/5227/98).
We thank Dr. Pavelcik for the synthesis of carboxy-
methylaspartic acid.
[31] M. Kosugi, Sh. Hikichi, M. Akita, Y. Moro-oka, J. Chem. Soc.,
Dalton Trans. 2 (1999) 1369.
[32] V. Conte, F. Di Furia, S. Moro, J. Mol. Catal. A, Chem. 104
(1995) 159.
References
[33] R. Fulwood, H. Schmidt, D. Rehder, J. Chem. Soc., Chem.
Commun. (1995) 1443.
[1] H. Plat, B.E. Krenn, R. Wever, Biochem. J. 248 (1987) 277.