Mendeleev Commun., 2012, 22, 152–153
OH
O
OOH
4
(100)
3
2
H2O2
+
+
+
+
(110)
3.5
catalyst
(200)
1
OH
O
OOH
0
1.5
5.5
7.5
9.5
H2O2
2q/°
catalyst
Figure 2 XRD pattern of PW11V/MCM after use.
Scheme 1
500
Table 1 Oxidation of cyclohexane and cyclooctane (catalyst, 0.4 g; substrate,
92 mmol; H2O2/substrate molar ratio, 4:1; reaction time, 8 h; temperature,
80°C).
400
300
200
100
0
Pore Con-
Pore
Selectivity (%)b
-one -ol -OOH
Sub-
strate
SBET
/
dia-
ver-
Catalyst
volume/
m2 g–1
meter/ sion
cm3 g–1
nm
(%)a
Cyclo- MCM
980
0.82
0.41
0.41
0.42
0.38
0.40
2.97
0
—
73 27
72 28
35 55 10
76 24
70 30
—
—
0
0
hexane PW11Co/MCM 760
PW11Co/MCMc 760
PW11Fe/MCM 790
PW11V/MCM 754
PW11Cu/MCM 765
2.75 15
2.75 17
2.68 13
2.66 19
2.72 18
0
0.25
0.50
0.75
1.00
0
0
p/p0
Cyclo- PW11Co/MCM
octane PW11Fe/MCM
PW11V/MCM
19
16
21
20
5
16
11
74 26
33 53 14
74 26
72 28
40 60
0
Figure 3 Nitrogen adsorption–desorption isotherm of PW11V/MCM after use.
0
0
0
81
0
shows the N2 adsorption–desorption isotherm of PW11V/MCM,
which still reveals mesoporous structure.
The oxidation on these PW11M/MCM catalysts occurs via a
radical pathway since no products were detected upon the addition
of a radical scavenger (2,6-di-tert-butyl-4-methylphenol).17
PW11Cu/MCM
Cyclo- PW11Cod
hexane PW11Fee
PW11Cud
13
8
36 64
a Based on the gas chromatographic peak areas. b Expressed as a percentage
of the total products; -ol = cycloalkanol; -one = cycloalkanone; -OOH =
cycloalkylhydroperoxide.c H2O2/aceticacidmolarratio,1:1. d Cyclohexane,
18.5 mmol; catalyst, 0.04 mmol; H2O2 /cyclohexane molar ratio, 2:1;
MeCN, 10 ml; 80°C, 12 h; e Same as d but at 60°C.4
This work was supported by a research grant ‘The 90th
Anniversary of Chulalongkorn University Fund’.
References
1 I. V. Kozhevnikov, Chem. Rev., 1998, 98, 171.
metal introduced. The activity increased in the order V > Cu >
> Co > Fe. Compared between the supported and the unsupported
catalysts, PW11M/MCM showed higher selectivity for cyclo-
hexanone, except for PW11Fe/MCM, revealing the ability of
solid matrices, MCM-41 to control surface reactions modifying
the adsorption–desorption equilibria of reagents, reaction inter-
mediates and products. The polar surface of the siliceous support
is expected to favor the accumulation of produced alcohols at the
interfaces and, consequently, oxidation to ketones. These results
are in agreement with published data.10 No cycloalkyl hydro-
peroxide was detected (except for the case of PW11Fe/MCM), this
is similar to the result over (Bu4N)7H3[Co4(H2O)2(PW9O34)2].16
The addition of acetic acid led to a further increase in the cyclo-
hexane conversion in the presence of PW11Co/MCM from 15 to
17%. This can be attributed to the stabilization of H2O2 as peroxy
acetic acid species. PW11Fe/MCM showed 10 and 14% selectivity
for cycloalkyl hydroperoxide in cyclohexane and cyclooctane,
2 N. Mizuno and M. Misono, Chem. Rev., 1998, 98, 199.
3 R. Neumann and M. Dahan, J. Chem. Soc., Chem. Commun., 1995, 171.
4 M. M. Q. Simoes, I. C. M. S. Santos, M. S. S. Balula, J. A. F. Gamelas,
A. M. V. Cavaleiro, M. Grac, P. M. S. Neves and J. A. S. Cavaleiro, Catal.
Today, 2004, 91–92, 211.
5 I. C. M. S. Santos, J. A. F. Gamelas, M. S. S. Balula, M. M. Q. Simoes,
M. Grac, P. M. S. Neves, J.A. S. Cavaleiro andA. M. V. Cavaleiro, J. Mol.
Catal. A: Chem., 2007, 262, 41.
6 R. Neumann and A. M. Khenkin, J. Org. Chem., 1994, 59, 7577.
7 W. Zhu, H. Li, X. He, Q. Zhang, H. Shu and Y. Yan, Catal. Commun.,
2008, 9, 551.
8 M. L. Guo, Green Chem., 2004, 6, 271.
9 O. A. Kholdeeva, M. P. Vanina, M. N. Timofeeva, R. I. Maksimovskaya,
T. A. Trubitsina, M. S. Melgunov, E. B. Burgina, J. Mrowiec-Bialon,
A. B. Jarzebski and C. L. Hill, J. Catal., 2004, 226, 363.
10 S. Tangestaninejad, V. Mirkhani, M. Moghadam, I. Mohammadpoor-
Baltork, E. Shams and H. Salavati, Ultrason. Sonochem., 2008, 15, 438.
11 C. Zhang, W. Zhou and S. Liu, J. Phys. Chem. B, 2005, 109, 24319.
12 M. M. Q. Simoes, C. M. M. Conceic, , J. A. F. Gamelas, P. M. D. N.
Domingues, A. M. V. Cavaleiro, J. A. S. Cavaleiro, A. J. V. Ferrer-Correia
and R. A.W. Johnstone, J. Mol. Catal. A: Chem., 1999, 144, 461.
13 R. Razi, M. Abedini, A. N. Kharat and M. M. Amini, Catal. Commun.,
2008, 9, 245.
14 D. Kumar and C. C. Landry, Microporous Mesoporous Mater., 2007, 98,
309.
15 G. B. Shul’pin, G. V. Nizova,Y. N. Kozlov, L. G. Cuervo and G. Süss-Fink,
Adv. Synth. Catal., 2004, 346, 317.
16 I. C. M. S. Santos, J. A. F. Gamelas, M. S. S. Balula, Mário M.Q. Simões,
M. Graça P.M.S. Neves, J. A. S. Cavaleiro and A. M. V. Cavaleiro, J. Mol.
Catal. A: Chem., 2007, 262, 41.
respectively. The hydroperoxide was presumably formed by Feiii-
16
·
initiated generation of HO . However, the cycloalkyl hydro-
peroxide formation is much less than that with the unsupported
catalyst. We performed oxidation in the absence of a solvent.
Cyclooctane can also be oxidized by these catalysts with higher
conversions. The most active catalyst PW11V/MCM gave a higher
conversion (21%) of cyclooctane than that reported (16%).10 The
solid catalysts could be filtered off and reused, the activities
dropped ~1–2% after the third run without change in product
selectivity. This isduetosomeleaching(13–14%PW11Mremained,
analyzed by ICP) or surface coverage of the catalysts after triple
use. However, the structure of the MCM-41 support was not col-
lapsed, as shown in Figure 2. Diffraction peaks from MCM-41 are
still observed, except with reduction in peak intensities. Figure 3
17 G. Süss-Fink, L. Gonzalez and G. B. Shul’pin, Appl. Catal. A: Gen., 2001,
217, 111.
Received: 27th September 2011; Com. 11/3804
– 153 –