Angewandte Chemie International Edition
10.1002/anie.202002626
RESEARCH ARTICLE
acids. Therefore, the TMS-EBX reagents offer tremendous
potential as broad profile cysteine-reactive probes in
chemoproteomics.
[1]
For selected reviews on chemical protein modifications, see: (a) G. T.
Hermanson, Bioconjugate techniques, 2nd ed.; Academic Press: San
Diego, 2008. (b) G. J. L. Bernardes, J. M. Chalker, B. G. Davis, Chemical
Protein Modification; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
Germany, 2010. (c) O. Boutureira, G. J. L. Bernardes, Chem. Rev. 2015,
115, 2174-2195. (d) X. Chen, Y.-W. Wu, Org. Biomol. Chem. 2016, 14,
Conclusion
5417-5439. (e) N. Krall, F. P. Da Cruz, O. Boutureira, G. J. L. Bernardes,
Nat. Chem. 2016, 8, 103-113.
[
2]
3]
For recent general reviews on bioorthogonal reactions, see: (a) E. M.
Sletten, C. R. Bertozzi, Angew. Chem., Int. Ed. 2009, 48, 6974-6998. (a)
K. Lang, J. W. Chin, ACS Chem. Biol., 2014, 9, 16-20. (b) Y. Gong, L.
Pan, Tetrahedron Lett. 2015, 56, 2123-2131. (c) R. D. Row, J. A.
Prescher, Acc. Chem. Res. 2018, 51, 1073-1081. (d) N. K. Devaraj, ACS
Cent. Sci. 2018, 4, 952-959.
In summary, we described a procedure for cysteine ethynylation
using TMS-ethynylbenziodoxolone (EBX) reagents. The reported
labeling process displayed tolerance to various buffers, pH,
temperatures and concentrations. Under native conditions,
diverse cysteine-containing peptides formed Csp-S bonds, with
the electron-deficient reagent JW-RT-01 (6b) performing best.
Chemoselectivity was observed in presence of numerous
nucleophilic amino acids. Although side reactivity was observed
in presence of arginine and tyrosine residues, the corresponding
thioalkynes were still generated in 59% and 84% yield
respectively. With simple reducing pre-treatment, alkynylation of
cysteines in disulfide bonds was performed on bioactive oxytocin
[
For Sharpless seminal report, see: (a) V. V. Rostovtsev, L. G. Green, V.
V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed. 2002, 41, 2596-2599.
For Meldal seminal report, see: (b) C. W. Tornøe, C. Christensen, M.
Meldal, J. Org. Chem. 2002, 67, 3057-3064. For a general review, see:
(c) M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952-3015. For
reviews on biological applications, see: (d) P. Thirumurugan, D. Matosiuk,
K. Jozwiak, Chem. Rev. 2013, 113, 4905-4979.
[
4]
For selected examples, see: (a) A. H. El-Sagheer, T. Brown, Chem. Soc.
Rev. 2010, 39, 1388-1405. (b) V. Hong, N. F. Steinmetz, M. Manchester,
M. G. Finn, Bioconjugate Chem. 2010, 21, 1912-1916. (c) C.-X. Song, K.
E. Szulwach, Q. Dai, Y. Fu, S.-Q. Mao, L. Lin, C. Street, Y. Li, M. Poidevin,
H. Wu, J. Gao, P. Liu, L. Li, G.-L. Xu, P. Jin, C. He, Cell 2013, 153, 678-
(
11). Finally, the resulting terminal thioalkynes were submitted to
CuAAC, hydrolysis and Sonogashira cross-coupling in a one-pot
manner. Cysteine alkynylation was also conducted on the more
complex protein trastuzumab (16), a monoclonal antibody of ~150
kDa possessing 8 accessible cysteine residues. Using the less
reactive TMS-EBX (6a) and JW-RT-02 (6c), good conversion and
average DoC values were obtained, with an apparent high
cysteine selectivity, as demonstrated by little to no conjugation on
the non-reduced antibody under optimized conditions. Finally, the
TMS-EBX compounds also performed labeling of HeLa lysates in
vitro and in living HeLa cells. MS-based proteomics analysis
showed that JW-RT-03 (6d) was the optimal reagent, especially
for in situ labeling in living cells. Moreover, JW-RT-03 (6d)
exhibited a greater coverage of the cysteinome than JW-RF-010
691. (d) G. Charron, M. M. H. Li, M. R. MacDonald, H. C. Hang, Proc.
Natl. Acad. Sci. U. S. A. 2013, 110, 11085-11090. (e) C. Wang, E.
Weerapana, M. M. Blewett, B. F. Cravatt, Nat. Methods 2014, 11, 79-85.
(a) N. Li, R. K. V. Lim, S. Edwardraja, Q. Lin, J. Am. Chem. Soc. 2011,
[5]
[6]
[7]
133, 15316-15319. (b) J. Li, S. Lin, J. Wang, S. Jia, M. Yang, Z. Hao, X.
Zhang, P. R. Chen, J. Am. Chem. Soc. 2013, 135, 7330-7338.
For selected reviews, see: (a) J. M. Chalker, G. J. L. Bernardes, Y. A.
Lin, B. G. Davis, Chem. Asian J. 2009, 4, 630-640. (b) S. B. Gunnoo, A.
Madder, ChemBioChem 2016, 17, 529-553.
For selected examples, see: (a) E. Weerapana, C. Wang, G. M. Simon,
F. Richter, S. Khare, M. B. D. Dillon, D. A. Bachovchin, K. Mowen, D.
Baker, B. F. Cravatt, Nature 2010, 468, 790-795. (b) C. Tian, R. Sun, K.
Liu, L. Fu, X. Liu, W. Zhou, Y. Yang, J. Yang, Cell Chem. Biol. 2017, 24,
(
4) and IAA-alkyne, while maintaining high chemoselectivity.
Therefore, TMS-EBXs represent an excellent opportunity for
broad cysteine-reactive probes in chemoproteomics and we
anticipate broad application of these reagents in the near future.
1416–1427. (c) D. G. Hoch, D. Abegg, A. Adibekian, Chem. Commun.
2018, 54, 4501-4512. (d) M. Abo, C. Li, E. Weerapana, Mol. Pharm. 2018,
15, 743-749.
[
8]
9]
For selected examples, see: (a) M. Link, X. Li, J. Kleim, O. S. Wolfbeis,
Eur. J. Org. Chem. 2010, 6922-6927. (b) M. E. B. Smith, M. B. Caspersen,
E. Robinson, M. Morais, A. Maruani, J. P. M. Nunes, K. Nicholls, M. J.
Saxton, S. Caddick, J. R. Baker, V. Chudasama, Org. Biomol. Chem.
Acknowledgements
2015, 13, 7946-7949.
J. W. thanks ERC (European Research Council, Starting Grant
iTools4MC, number 334840 and Consolidator Grant SeleCHEM,
number 771170) and EPFL for financial support. C. S thanks
Région Grand-Est and LabEx Medalis for financial support. Elija
Grinhagena from Laboratory of Catalysis and Organic Synthesis
at ISIC EPFL is thanked for finalizing the supporting information
on peptide functionalization (adding HPLC spectra and mass
data).
[
(a) H.-Y. Shiu, T.-C. Chan, C.-M. Ho, Y. Liu, M.-K. Wong, C.-M. Che,
Chem. Eur. J. 2009, 15, 3839-3850. (b) H.-Y. Shiu, H.-C. Chong, Y.-C.
Leung, T. Zou, C.-M. Che, Chem. Commun. 2014, 50, 4375.
[
[
[
10] C. Bottecchia, M. Rubens, S. B. Gunnoo, V. Hessel, A. Madder, T. Noël,
Angew. Chem. Int. Ed. 2017, 56, 12702–12707.
11] A. J. Rojas, B. L. Pentelute, S. L. Buchwald, Org. Lett. 2017, 19, 4263-
4266.
12] K. Hanaya, J. Ohata, M. K. Miller, A. E. Mangubat-Medina, M. J.
Swierczynski, D. C. Yang, R. M. Rosenthal, B. V. Popp, Z. T. Ball, Chem.
Commun. 2019, 55, 2841-2844.
[13] For recent reviews, see: (a) M. Yang, J. Li, P. R. Chen, Chem. Soc. Rev.
2
014, 43, 6511-6526. (b) J. M. Chalker, Metal‐Mediated Bioconjugation
Conflict of interest
In Chemoselective and Bioorthogonal Ligation Reactions 2017 (eds W.
R. Algar, P. E. Dawson and I. L. Medintz).
The authors declare no conflict of interest.
[14] C. J. Pickens, S. N. Johnson, M. M. Pressnall, M. A. Leon, C. J. Berkland,
Bioconjugate Chem. 2018, 29, 686-701.
[15] P. M. S. D. Cal, G. J. L. Bernardes, P. M. P. Gois, Angew. Chem., Int.
Ed. 2014, 53, 10585-10587.
Keywords: bioconjugation • cysteine ethynylation • hypervalent
iodine • antibody functionalization • cysteine proteomic
This article is protected by copyright. All rights reserved.