Journal of the American Chemical Society
Article
the polar character of the structure because similar
intermolecular interactions are not observed in the centrosym-
metric sulfur analogues. The three selenides are type-I
nonphase-matchable over the investigated wavelength range,
(5) Chung, I.; Song, J.-H.; Kim, M. G.; Malliakas, C. D.; Karst, A. L.;
Freeman, A. J.; Weliky, D. P.; Kanatzidis, M. G. J. Am. Chem. Soc.
2
(
009, 131, 16303.
6) Banerjee, S.; Szarko, J. M.; Yuhas, B. D.; Malliakas, C. D.; Chen,
L. X.; Kanatzidis, M. G. J. Am. Chem. Soc. 2010, 132, 5348.
7) Chung, I.; Jang, J.-I.; Malliakas, C. D.; Ketterson, J. B.; Kanatzidis,
M. G. J. Am. Chem. Soc. 2010, 132, 384.
8) Chung, I.; Jang, J. I.; Gave, M. A.; Weliky, D. P.; Kanatzidis, M. G.
+
and the K analogue shows a second-order NLO response ∼30
(
times that of AgGaSe at λ/2 = 730 nm, which, to the best of
2
our knowledge, is the strongest among reported quaternary
(
chalcophosphates in the range of λ/2 = 600−900 nm. It is also
Chem. Commun. 2007, 4998.
∼
20 times stronger than AgGaSe at the telecommunications
2
(9) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno,
R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.;
Mitsui, A. Nat. Mater. 2011, 10, 682.
relevant wavelength of λ = 1.55 μm. Our broadband optical
measurements from λ = 1200−2700 nm roughly triple the
range that has been studied in the past and demonstrate how
important investigation of materials over a significantly wide
range is because of their widely varying SHG efficiencies.
K GeP Se is also a phase-change material that can be
(10) Mo, Y. F.; Ong, S. P.; Ceder, G. Chem. Mater. 2012, 24, 15.
(
11) Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D.
P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2007, 129, 14996.
12) Chung, I.; Song, J.-H.; Jang, J. I.; Freeman, A. J.; Ketterson, J. B.;
Kanatzidis, M. G. J. Am. Chem. Soc. 2009, 131, 2647.
13) Chung, I.; Kim, M. G.; Jang, J. I.; He, J. Q.; Ketterson, J. B.;
Kanatzidis, M. G. Angew. Chem., Int. Ed. 2011, 50, 10867.
(
4
4
12
quenched from the melt to obtain a glassy form of the
compound that, when heated below the melting point, passes
through a metastable semicrystalline state before converting to
the crystalline state obtained when slow cooling the melt. The
amorphous phase was shown to contain intact molecular anions
by Raman spectroscopy, and the metastable phase is thought to
be an alternate packing of the anions that is slightly different
from the slow-cooled sample. SHG measurements on glassy
K GeP Se also showed measurable responses that were ∼2
(
(
(
14) Kanatzidis, M. G. Curr. Opin. Solid State Mater. Sci. 1997, 2, 139.
15) Derstroff, V.; Ensling, J.; Ksenofontov, V.; Gutlich, P.; Tremel,
W. Z. Anorg. Allg. Chem. 2002, 628, 1346.
(16) Gieck, C.; Derstroff, V.; Block, T.; Felser, C.; Regelsky, G.;
Jepsen, O.; Ksenofontov, V.; Gutlich, P.; Eckert, H.; Tremel, W.
Chem.-Eur. J. 2004, 10, 382.
(17) Wu, Y. D.; Bensch, W. Inorg. Chem. 2007, 46, 6170.
(18) Loken, S.; Tremel, W. Eur. J. Inorg. Chem. 1998, 283.
(19) Milot, S.; Wu, Y.; Nather, C.; Bensch, W.; Klepp, K. O. Z. Anorg.
4
4
12
orders of magnitude smaller than the crystalline phase with no
poling. Congruently melting molecular materials such as those
reported here may prove to be beneficial as phase-change
materials in that once the molecule is formed only a small
amount of thermal energy is required for the reorganization of
the disordered molecules into an ordered crystalline state.
Allg. Chem. 2008, 634, 1575.
20) Komm, T.; Strobel, S.; Schleid, T. J. Alloys Compd. 2008, 451,
48.
21) Piccoli, P. M. B.; Abney, K. D.; Schoonover, J. D.; Dorhout, P.
K. Inorg. Chem. 2001, 40, 4871.
22) Hess, R. F.; Abney, K. D.; Burris, J. L.; Hochheimer, H. D.;
Dorhout, P. K. Inorg. Chem. 2001, 40, 2851.
23) Chung, I.; Holmes, D.; Weliky, D. P.; Kanatzidis, M. G. Inorg.
Chem. 2010, 49, 3092.
(
6
(
(
ASSOCIATED CONTENT
■
(
*
S
Supporting Information
PXRD, DTA, and UV−vis for Rb GeP Se and Cs GeP Se ,
4
4
12
4
4
12
(24) Morris, C. D.; Kanatzidis, M. G. Inorg. Chem. 2010, 49, 9049.
PXRD and UV−vis for the sulfides, coordination environments
(25) Sorokina, I. T.; Vodopyanov, K. L. Solid-state Mid-infrared Laser
for K in K GeP Se , particle size-dependent SHG measure-
4
4
12
Sources; Springer: Berlin; New York, 2003.
26) Partnership, S. Nat. Photonics 2010, 4, 576.
ments, and crystallographic information files (CIF). This
(
(27) Serebryakov, V. A.; Boiko, E. V.; Petrishchev, N. N.; Yan, A. V. J.
Opt. Technol. 2010, 77, 6.
(
28) Waynant, R. W.; Ilev, I. K.; Gannot, I. Philos. Trans. R. Soc., A
001, 359, 635.
29) Skeldon, K. D.; Gibson, G. M.; Wyse, C. A.; McMillan, L. C.;
Monk, S. D.; Longbottom, C.; Padgett, M. J. Appl. Opt. 2005, 44,
712.
30) Dorn, R.; Baums, D.; Kersten, P.; Regener, R. Adv. Mater. 1992,
, 464.
31) Eggleton, B. J.; Luther-Davies, B.; Richardson, K. Nat. Photonics
011, 5, 141.
2
(
AUTHOR INFORMATION
4
(
4
(
Notes
The authors declare no competing financial interest.
2
ACKNOWLEDGMENTS
■
(
(32) Mukherjee, A.; Von der Porten, S.; Patel, C. K. N. Appl. Opt.
2010, 49, 2072.
(33) Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete
Survey; Springer-Science: New York, 2005.
Financial support from the National Science Foundation
Grant DMR-1104965) is gratefully acknowledged. The
SEM/EDS work was performed in the EPIC facility of
NUANCE Center at Northwestern University. NUANCE
Center is supported by the NSF-NSEC, NSF-MRSEC, Keck
Foundation, the State of Illinois, and Northwestern University.
(34) Harasaki, A.; Kato, K. Jpn. J. Appl. Phys., Part 1 1997, 36, 700.
(35) Ziegler, B. C.; Schepler, K. L. Appl. Opt. 1991, 30, 5077.
(36) Peterson, R. D.; Schepler, K. L.; Brown, J. L.; Schunemann, P.
G. J. Opt. Soc. Am. B 1995, 12, 2142.
37) Pearl, S.; Fastig, S.; Ehrlich, Y.; Lavi, R. Appl. Opt. 2001, 40,
(
REFERENCES
1) Carpentier, C. D.; Nitsche, R. Mater. Res. Bull. 1974, 9, 1097.
2) Rogach, E. D.; Sviridov, E. V.; Arnautova, E. A.; Savchenko, E. A.;
■
2490.
(
(
(38) Petrov, V.; Rotermund, F.; Noack, F.; Schunemann, P. Opt. Lett.
1999, 24, 414.
Protsenko, N. P. Zh. Tekh. Fiz. 1991, 61, 201.
3) Scott, B.; Pressprich, M.; Willet, R. D.; Cleary, D. A. J. Solid State
Chem. 1992, 96, 294.
4) Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.;
Kanatzidis, M. G. J. Am. Chem. Soc. 2008, 130, 12270.
(39) Song, J.; Xia, J. F.; Zhang, Z.; Strickland, D. Opt. Lett. 2002, 27,
200.
(40) (a) Sasaki, T.; Mori, Y.; Yoshimura, M.; Yap, Y. K.; Kamimura,
T. Mater. Sci. Eng., R 2000, 30, 1. (b) Belokoneva, E. L.; Stefanovich, S.
Y. Journal of Solid State Chemistry 2012, 195, 79. (c) Smith, M. D.;
(
(
2
0743
dx.doi.org/10.1021/ja309386e | J. Am. Chem. Soc. 2012, 134, 20733−20744