Page 5 of 14
1
Journal of the American Chemical Society
Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 19512-
pyridinophaniumsalzen. Chem. Ber. 1985, 118, 4259-
4270. see Table S1 for optimizations.
19517.
2
4.
5.
6.
7.
Hu, D. X.; Withall, D. M.; Challis, G. L.; Thomson, R.
J. Structure, Chemical Synthesis, and Biosynthesis of
Prodiginine Natural Products. Chem. Rev. 2016, 116,
7818-7853.
Collman, J. P.; Chien, A. S.; Eberspacher, T. A.;
Brauman, J. I. An Agostic Alternative to the P-450
Rebound Mechanism. J. Am. Chem. Soc. 1998, 120,
425-426.
12. Bellamy, F.; Martz, P.; Streith, J. An Intriguing Copper
Salt Effect upon the Photochemistry of Pyridine-N-
Oxides. Specific Photoinduced Syntheses of 3-
substituted 2-formylpyrroles. Heterocycles 1975, 3,
395-400.
13. To our knowledge, ring systems 15 and 17 have not
been described previously. Further studies of the
photochemistry are ongoing.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Boonlarppradab, C.; Kauffman, C. A.; Jensen, P. R.;
14. Frederich, J. H.; Matsui, J. K.; Chang, R. O.; Harran,
P. G. Substituted 2,2'-bipyrroles and pyrrolylfurans via
intermediate isoxazolylpyrroles Tetrahedron Lett.
2013, 54, 2645-2647.
Fenical, W. Marineosin
A and B, Cytotoxic
Spiroaminals from a Marine-Derived Actinomycete.
Org. Lett. 2008, 10, 5505-5508.
(a) Lu, W.; Kancharla, P.; Reynolds, K. A. Mar H, a
Bifunctional Enzyme Involved in the Condensation
and Hydroxylation Steps of the Marineosin
Biosynthetic Pathway Org. Lett. 2017, 19, 1298-1301;
(b) Salem, S. M.; Kancharla, P.; Florova, G.; Gupta,
S.; Lu, W. L.; Reynolds, K. A. Elucidation of Final
Steps of the Marineosins Biosynthetic Pathway
through Identification and Characterization of the
Corresponding Gene Cluster. J. Am. Chem. Soc. 2014,
136, 4565-4574.
15. Xu, D. X.; Clift, M. D.; Lazarski, K. E.; Thomson, R.
J. Enantioselective Total Synthesis and Confirmation
of the Absolute and Relative Stereochemistry of
Streptorubin B. J. Am. Chem. Soc. 2011, 133, 1799-
1804.
16. Structure 21, and especially 25, were prone to the
sigmatropic shift shown below. See SI for details and
characterization. Further studies are ongoing. We have
not yet found evidence of atropisomerism in the
rearrangement products.
8.
9.
Sydor, P. K.; Barry, S. M.; Odulate, O. M.; Barona-
Gomez, F.; Haynes, S. W.; Corre, C.; Song, L.; Challis,
G. L. Regio- and Stereodivergent Antibiotic Oxidative
Carbocyclizations Catalysed by Rieske Oxygenase-
like Enzymes. Nat. Chem. 2011, 3, 388.
Me
OMe
unstable
OH
OMe
MeOH
N
H
NH
N
[1,7]
NR
Me
H
HN
NR
(a) Aldrich, L. N.; Dawson, E. S.; Lindsley, C. W.
Evaluation of the Biosynthetic Proposal for the
Synthesis of Marineosins A and B. Org. Lett. 2010, 12,
1048-1051; (b) Aldrich, L. N.; Berry, C. B.; Bates, B.
S.; Konkol, L. C.; So, M.; Lindsley, C. W. Towards the
Total Synthesis of Marineosin A: Construction of the
Macrocyclic Pyrrole and an Advanced, Functionalized
Spiroaminal Model. Eur. J. Org. Chem. 2013, 4215-
4218; (c) Cai, X. C.; Wu, X. X.; Snider, B. B. Synthesis
of the Spiroiminal Moiety of Marineosins A and B.
Org. Lett. 2010, 12, 1600-1603; (d) Cai, X. C.; Snider,
B. B. Synthesis of the Spiroiminal Moiety and
Approaches to the Synthesis of Marineosins A and B.
J. Org. Chem. 2013, 78, 12161-12175; (e) Li, G.;
Zhang, X.; Li, Q.; Feng, P. J.; Shi, Y. A Concise
Approach to the Spiroiminal Fragment of Marineosins.
Org. Biomol. Chem. 2013, 11, 2936-2938; (f) Xu, B.;
Li, G.; Li, J.; Shi, Y. Total Synthesis of the Proposed
Structure of Marineosin A. Org. Lett. 2016, 18, 2028-
2031.
t1/2 ~ 2-4 h @ 25ºC
Cl
OH
S27
21
25
R = Ts
R = H
17. Battiloccio, C.; Hawkins, J.M.; Ley, S.V. Mild and
Selective Heterogeneous Catalytic Hydration of
Nitriles to Amides by Flowing through Manganese
Dioxide. Org. Lett. 2014, 16, 1060-1063.
18. Roy, S.C.; Dutta, P.; Nandy, L.N.; Roy, S.K.; Samuel,
P.; Pillai, S.M.; Kaushik, V.K.; Ravindranathan, M.
Hydration of 3-cyanopyridine to nicotinamide over
MnO2 catalyst. App. Catalysis A. 2005, 290, 175-180.
19. []25 reported for natural marineosin A was -101.7°
D
(c 0.06, MeOH), whereas we observe []25D= +138.7°
(c 0.02, MeOH) for 10. Notably, []25 reported for
D
marineosin B was +143.5° (c 0.09, MeOH), close to
our value. Reynolds et al. firmly established
marineosin A is biosynthesized from a C23-S
precursor (ref. 7). Absolute stereochemistry at C23 in
our synthesis derives from (S)-propylene oxide (98%
ee) and was confirmed in the X-ray structure of 26. We
believe natural marineosin A is dextrorotatory,
identical to synthetic 10. [] values for marineosins A
and B were likely interchanged in ref 6. Professor
Fenical informed us his samples of natural marineosins
have decomposed. We therefore synthesized the
antipode of 10 from (R)-propylene oxide. The
biological properties of both enantiomers will be
10. Weber, H.; Rohn, T. 2H-Azirine und 2-(-
Cyanalkyl)furan als neuartige Photoprodukte aus
[n](2,6)Pyridinophan-N-Oxiden und ihre Bedeutung
für den Reaktionsverlauf. Chem. Ber. 1989, 122, 945-
950.
11. Weber, H.; Pant, J.; Wunderlich, H. Darstellung und
Eigenschaften
von
N-Methyl-[n](2,6)
ACS Paragon Plus Environment