X. Li et al. / Journal of Solid State Chemistry 184 (2011) 2738–2743
2743
3.0 mM with a sensitivity of 229.3
The NiO/C–Ti electrode exhibited
m
Am Mꢀ1 cmꢀ2 (R2¼0.99906).
References
a
higher sensitivity at
582.6
mated as 2.6 mM.
m
Am Mꢀ1 cmꢀ2 (R2¼0.99961). Its linear range was esti-
[1] J. Wang, Chem. Rev. 108 (2008) 814–825.
[2] J. Shah, E. Wilkins, Electroanalysis 15 (2003) 157–167.
[3] J.M. Zen, C.W. Lo, Anal. Chem. 68 (1996) 2635–2640.
[4] X. Han, Y. Zhu, X.L. Yang, C.Z. Li, J. Alloys Compd. 500 (2010) 247–251.
[5] R. Wilson, A.P.F. Turner, Biosens. Bioelectron. 7 (1992) 165–185.
[6] S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556 (2006) 46–57.
[7] Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Electrochem. Commun. 9 (2007) 981–988.
[8] X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, J.Y. Mo, Anal. Biochem. 363 (2007)
143–150.
[9] F.J. Miao, B. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, P.K. Chu, Sens. Actuators B
141 (2009) 338–342.
[10] L.R. Kong, X.F. Lu, X.J. Bian, W.J. Zhang, C. Wang, J. Solid State Chem. 183
(2010) 2421–2425.
[11] M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc., Perkin Trans. 2 (1972)
1396–1403.
[12] A. Salimi, M. Roushani, Electrochem. Commun. 7 (2005) 879–887.
[13] Q.F. Yi, W. Huang, W.Q. Yu, L. Li, X.P. Liu, Electroanalysis 20 (2008)
2016–2022.
[14] L.M. Lu, L. Zhang, F.L. Qu, H.X. Lu, X.B. Zhang, Z.S. Wu, S.Y. Huan, Q.A. Wang,
G.L. Shen, R.Q. Yu, Biosens. Bioelectron. 25 (2009) 218–223.
[15] X. Cheng, S. Zhang, H.Y. Zhang, Q.J. Wang, P.G. He, Y.Z. Fang, Food Chem. 106
(2008) 830–835.
[16] Y. Liu, H. Teng, H.Q. Hou, T.Y. You, Biosens. Bioelectron. 24 (2009)
3329–3334.
NiO/C nanosheet array exhibited shorter response time, lower
detection limit and higher sensitivity towards the detection of
glucose. The presence of carbon ensured a large specific surface
area and good conductivity of the final composite. The large
specific surface area increased the adsorption of glucose. The good
conductivity facilitated the electron transfer. The fast electron
transfer was helpful in shortening the response time and enhan-
cing the sensitivity. Therefore, the NiO/C nanosheet array exhib-
ited better catalytic oxidation activity of glucose over the pure
NiO nanosheet. Compared to other nonenzymatic glucose sensors,
the proposed NiO–Ti electrode showed good performance in
terms of sensitivity and stability. For example, it exhibited higher
sensitivity than sensors based on carbon materials [31–33],
nanoscale Ni(OH)2 [34] and NiO/MCNTs composite [35]. The
electrode maintained at least 93.6% of the initial sensitivity even
after 60 days. The electrode exhibited long-term stability in the
duplicative determination of glucose. This result indicated that an
effective glucose sensor based on NiO/C nanocomposite can be
easily prepared using our method.
[17] A. Vinu, P. Srinivasu, M. Takahashi, T. Mori, V.V. Balasubramanian, K. Ariga,
Microporous Mesoporous Mater. 100 (2007) 20–26.
[18] W.D. Zhang, J. Chen, L.C. Jiang, Y.X. Yu, J.Q. Zhang, Microchim. Acta 168
(2010) 259–265.
[19] G.C. Yang, E.J. Liu, N.W. Khun, S.P. Jiang, J. Electroanal. Chem. 627 (2009)
51–57.
4. Conclusion
[20] H.S. Yin, Y.L. Zhou, Q. Ma, S.Y. Ai, Q.P. Chen, L.S. Zhu, Talanta 82 (2010)
1193–1199.
[21] X.H. Huang, J.P. Tu, C.Q. Zhang, J.Y. Xiang, Electrochem. Commun. 9 (2007)
1180–1184.
[22] M. Sevilla, A.B. Fuertes, Carbon 47 (2009) 2281–2289.
[23] X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed. 43 (2004) 597–601.
[24] L.L. Wu, Y.S. Wu, H.Y. Wei, Y.C. Shi, C.X. Hu, Mater. Lett. 58 (2004)
2700–2703.
[25] P. Justin, S.K. Meher, G.R. Rao, J. Phys. Chem. C. 114 (2010) 5203–5210.
[26] H. Qiao, L.F. Xiao, Z. Zheng, H.W. Liu, F.L. Jia, L.Z. Zhang, J. Power Sources 185
(2008) 486–491.
[27] L. Zhang, W.Z. Wang, M. Shang, S.M. Sun, J.H. Xu, J. Hazard. Mater. 172 (2009)
1193–1197.
[28] J. Read, D. Foster, J. Wolfenstine, W. Behl, J. Power Sources 96 (2001)
277–281.
[29] International Union of Pure and Applied Chemistry (IUPAC), Pure Appl. Chem.
57 (1985) 603–619.
[30] E. Scavetta, M. Berrettoni, R. Seeber, D. Tonelli, Electrochim. Acta 46 (2001)
2681–2692.
[31] J.X. Wang, X.W. Sun, X.P. Cai, Y. Lei, L. Song, S.S. Xie, Electrochem. Solid-State
Lett. 10 (2007) 58–60.
NiO/C nanosheet array was fabricated on Ti foil for the first
time. The direct growth of nanosheet array on electrode surface
improved the adhesion of electrocatalyst to the substrate. No
extra binder was used in the fabrication of electrode, offering
advantages of simplicity and economy. Moreover, the presence of
carbon ensured a large specific surface area and good conductivity
of NiO/C nanocomposite. As a result, the NiO/C nanosheet array
exhibited better catalytic oxidation activity of glucose over the
pure NiO nanosheet array. As a glucose sensor, the proposed
electrode exhibited high sensitivity, fast response, good stability,
and appropriate linear range. Combined with the merits of NiO/C
nanosheet array on a conductive substrate, this composite elec-
trode is promising for nonenzymatic glucose sensing.
[32] J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Electrochem.
Commun. 6 (2004) 66–70.
Acknowledgment
[33] J.C. Ndamanisha, L.P. Guo, Bioelectrochemistry 77 (2009) 60–63.
[34] A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron. 24 (2009) 1655–1660.
[35] M. Shamsipur, M. Najafi, M.M. Hosseini, Bioelectrochemistry 77 (2010)
120–124.
This work was financially supported by the National Natural
Science Foundation of PR China (No. 50872039).