Please do not adjust margins
RSC Advances
Page 4 of 5
COMMUNICATION
RSC Advances
5
1800
1600
1400
Tarascon, Nature, 2000, 407, 496−499.DOI: 10.1039/C5RA15452A
Charge
Discharge
6
7
Y. Zou and Y. Wang, Nanoscale, 2011, 3, 2615−2620.
B. Wang, J. L. Cheng, Y. P. Wu, D. Wang and D. N. He,
Electrochem. Commun., 2012, 23, 5−8.
L. Liu, Y. Guo, Y. Wang, X. Yang, S. Wang and H. Guo,
Electrochim. Acta, 2013, 114, 42−47.
X. Wang, L. Qiao, X. Sun, X. Li, D. Hu, Q. Zhang and D. He, J.
Mater. Chem. A, 2013, 1, 4173−4176.
0.2 C
1200
0.2 C
8
9
0.5 C
1 C
1000
800
600
400
200
0
2 C
5 C
10 W. Yang, G. Cheng, C. Dong, Q. Bai, X. Chen, Z. Peng and Z.
Zhang, J. Mater. Chem. A, 2014, , 20022−20029.
11 Y. Ren, P. G. Bruce and Z. Ma, J. Mater. Chem., 2011, 21
2
,
9312−9318.
12 P. Justin, S. K. Meher and G. R. Rao, J. Phys. Chem. C, 2010,
114, 5203−5210.
13 C. M. Parlett, K. Wilson and A. F. Lee, Chem. Soc. Rev., 2013,
42, 3876−3893.
0
5
10
15
20
25
30
Cycle Number
14 Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C. H. Shek, C. M. Wu
and J. K. Lai, Chem. Rev., 2012, 112, 3833−3855.
15 B. Cheng, Y. Le, W. Cai and J. Yu, J. Hazard. Mater., 2011, 185
889−897.
Fig. 8 Rate performance of the porous NiO electrode at different current densities.
,
electrode capacity could recover to 950 mA h g‐1 as the current
rate returned to the initial value of 0.2 C, indicating the
excellent high rate performance of the NiO sample for high
power LIBs and again confirming its good cycling stability. The
outstanding performance of the NiO sample may come from
its porous structure, which provides accessible space for
effective electrolyte transport and lithium ion diffusion.
Besides, the porous structure also accommodates the volume
change along with lithium ion insertion‐extraction and thus
prevents the mechanical disintegration.
16 Q. Liu, L. N. Jin and W. Y. Sun, Chem. Commun., 2012, 48
,
8814−8816.
17 C. Zhang, Y. Che, Z. Zhang, X. Yang and L. Zang, Chem.
Commun., 2011, 47, 2336−2338.
18 H.‐Y. Shi, B. Deng, S.‐L. Zhong, L. Wang and A.‐W. Xu, J.
Mater. Chem., 2011, 21, 12309−12315.
19 J. Zhao, P. Su, Y. Zhao, M. Li, Y. Yang, Q. Yang and C. Li, J.
Mater. Chem., 2012, 22, 8470−8475.
20 J. Zhao, M. Li, J. Sun, L. Liu, P. Su, Q. Yang and C. Li, Chem. Eur.
J., 2012, 18, 3163−3168.
21 K. Liu, H. Liu, L.‐L. Yang, F.‐Y. Zhao, Y. Li and W.‐J. Ruan, RSC
Adv., 2014, 4, 25160−25164.
22 X. Li, A. Dhanabalan and C. Wang, J. Power Sources, 2011,
196, 9625−9630.
23 C. Wang, D. Wang, Q. Wang and H. Chen, J. Power Sources,
2010, 195, 7432−7437.
24 X. Li, A. Dhanabalan, K. Bechtold and C. Wang, Electrochem.
Commun., 2010, 12, 1222−1225.
25 B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G.
V. S. Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim and C.‐H.
Sow, Chem. Mater., 2008, 20, 3360−3367.
Conclusions
In summary, a novel NiO material was synthesized by the
thermal decomposition of a CP precursor. The obtained NiO
product exhibits a rare porous flower‐like morphology, which
are composed by nanocrystalline constructed puffed plates.
This sample presents a high pore volume of 0.85 cm3 g‐1, and
the pore sizes distribute mainly in the range of mesopore and
large pore. Benefiting from its porous structure, this NiO
material exhibited excellent cycling stability in electrochemical
tests. At a current density of 0.5 C, the electrode fabricated by
it could maintain a stable capacity of ~1000 mA h g‐1 and a high
columbic efficiency of ~95% in 40 discharge‐charge cycles,
indicating that the NiO sample is an ideal anode material for
rechargeable LIBs. The results also suggest that the
hierarchically assembled porous structure applied in this work
is a promising morphology for the design of new electrode
materials.
Notes and references
1
2
3
4
C. Wei, H. Pang, C. Cheng, J. Zhao, P. Li and Y. Zhang,
CrystEngComm, 2014, 16, 4169−4175.
X.‐F. Bai, L.‐W. Xu, L.‐S. Zheng, J.‐X. Jiang, G.‐Q. Lai and J.‐Y.
Shang, Chem. Eur. J., 2012, 18, 8174−8179.
B. T. Yonemoto, G. S. Hutchings and F. Jiao, J. Am. Chem. Soc.,
2014, 136, 8895−8898.
D. Liu, B. B. Garcia, Q. Zhang, Q. Guo, Y. Zhang, S. Sepehri
and G. Cao, Adv. Funct. Mater., 2009, 19, 1015−1023.
4 | RSC Adv., 2015, 00, 1‐4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins