DO(AN et al.
Table 9 Invariant kinetic parameters obtained for the salen
type salicylaldimine ligand and complexes at
different heating rate by means of CR method
References
1 W. Zhang, J. L. Loebach, S. R. Wilson and
E. N. Jacobsen, J. Am. Chem. Soc., 112 (1990) 2801.
2 T. Matsuura, Tetrahedron, 33 (1977) 2869.
3 J. L. Serrano and L. Oriol, Adv. Mater., 7 (1995) 365.
4 L. Mao, K. Yamamato, W. Zhou and L. Jin,
Electroanalysis, 12 (2000) 72.
Sample
Einv/kJ mol–1
Ainv/s–1
L
66.68
84.04
1.5·105
2.5·105
1.8·106
1.2·1013
CoL
NiL
CuL
89.74
5 J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie and
C. M. Zepp, J. Org. Chem., 59 (1994) 1939.
6 J. Madarász, G. Pokol and S. Gál, J. Thermal Anal.,
42 (1994) 539.
180.17
where n is the number of degrees of freedom equal for
every dispersion.
7 I. L. Lapides, J. Thermal Anal., 50 (1997) 269.
8 F. Carrasco, Thermochim. Acta, 213 (1993) 115.
9 M. V. Kök and N. Acar, J. Therm. Anal. Cal., 83 (2006) 445.
10 M. V. Kök, J. Therm. Anal. Cal., 88 (2007) 663.
11 M. V. Kök and A. G. Iscan, J. Therm. Anal. Cal.,
88 (2007) 657.
The kinetic pairs (Ainv and Eainv) and probabili-
ties for twe decomposition functions were carried out
with software developed in our laboratory using Ex-
cel 2000. The histogram showing the distribution of the
probabilities associated with the twenty-three decom-
position functions is presented for L in Fig. 11.
The kinetic functions of the four materials are
close. From the distribution of probabilities can be
shown that the diffusion functions (Dn) are most
probable for the thermal decomposition of each
sample. The histograms obtained from differential
methods are also similar that of integral method.
12 J. Zsakó, J. Thermal Anal., 46 (1996) 1854.
13 A. A. Soliman, S. M. El-Medani and O. A. M. Ali,
J. Therm. Anal. Cal., 83 (2006) 385.
14 S. Durmuê, Ü. Ergün, J. C. Jaud, K. C Emregül, H. Fues
and O Atakol, J. Therm. Anal. Cal., 86 (2006) 337.
15 O. Z. Yeêilel, H. Ölmez and H. ¸budak, J. Therm. Anal.
Cal., OnlineFirst DOI: 10. 1007/s10973-005-7479-9.
16 G. G. Mohamed and H. Z. El-Wahab, J. Therm. Anal.
Cal., 73 (2003) 347.
17 F. DoÈan, S. Gülcemal, M. Yürekli and B. etinkaya,
J. Therm. Anal. Cal., 91 (2008) 395.
18 V. T. Kasumov and F. Koksal, Spectrochim. Acta, Part A,
61A(1-2) (2004) 225.
Conclusions
19 V. T. Kasumov, S. O.-Yaman and E. Tas, Spectrochim.
Acta, Part A, 62A(1-3) (2005) 716.
The TG curves of all the compounds show similar de-
composition when heated to about 500°C. The com-
plexes prepared with different metals decompose via
a one-step process. It was found that the thermal sta-
bilities of the ligand and its metal complexes follow
the order Co(II)>Cu(II)>Ni(II)>L. Using the IKP
method a kinetic analysis of the thermogravimetric data
was performed. The activation energy of the com-
plexes determined by applying Coats and Redfern
method and increased in the order Co(II)<Ni(II)<Cu(II).
Also, the activation energy of L and the complex sam-
ples studied was in the range of 66–180 kJ mol–1 de-
pending on the heating rate and model assumptions.
The kinetic function related to the mode of decomposition
of all complexes was found to be close. The diffusion
functions (Dn) are most probable for the thermal de-
composition of all complexes. DIP-MS was found to
be very powerful technique for the characterization of
the complex structure. It was noticed that doubly
charged ion stability occurred via two methyl groups
leaving from both sides of the ligand and its metal ion
complexes was high.
20 S. V Levchik, G. F. Levchik and A. L. Lesnikovich,
Thermochim. Acta, 92 (1985) 157.
21 M. Arshad, Saeed-ur-Rehman, S. Ali Khan, K. Masud,
N. Arshad and A. Ghani, Thermochim. Acta, 364 (2002) 143.
22 G. G. Mohamed, F. A. Nour-El Dien and E. A. El-Gamel,
J. Therm. Anal. Cal., 67 (2002) 135.
23 F. DoÈan, M. Ulusoy, Ö. F. Öztürk, I. Kaya and B. Salih,
J. Therm. Anal. Cal., (2009), in print.
24 V. Mamleev, S. Bourbigot, M. Le Bras, S. Duquesne and
J. Seëták, Phys. Chem. Chem. Phys., 2 (2000) 4708.
25 A. J. Lesnickovick and S. V Levchick, J. Thermal Anal.,
30 (1985) 667.
26 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.
27 A. J. Lesnickovick and S. V Levchick, J. Thermal Anal.,
27 (1983) 83.
28 S. Bourbigot, R. Delobel, M. Le Bras and D. Normand,
J. Chim. Phys., 90 (1993) 1909.
29 S. Bourbigot, X. Flambard and S. Duquesne, Polym. Int.,
50 (2001) 157.
Received: January 7, 2008
Accepted: September 16, 2008
DOI: 10.1007/s10973-008-8980-8
Acknowledgements
The authors gratefully acknowledge Basri Gülbakan and Ömür
elikbi¸ak for helpful Mass Spectrometry measurements.
276
J. Therm. Anal. Cal., 96, 2009