SOUAYA et al.
9 D. Czakis-Sulikowsa, A. Czylkowska,
to ensure that the reaction is complete. The volume
was then made up to 50 mL by distilled water to give
5·10–3 M solutions, the temperature was adjusted to
25°C±0.2 and the solution titrated potentiometrically
against potassium hydroxide solution. As expected
the four prepared complexes showed two ionization
constants. The obtained results confirm our assumption.
These results are shown in Table 1.
J. Radwanska-Doczekalska, R. Grodzki and
E. Wojciechowska, J. Therm. Anal. Cal., 90 (2007) 557.
10 R. P. Martin, M. M. Petit-Ramel and J. P. Scharff, In Metal
Ions in Biological Systems, Marcel Dekker, 2 (1976) 1.
11 K. Hideyuki, J. Koichiro, M. Hideki and E. Hisahiko,
Inorg. Chim. Acta, 283 (1998) 160.
12 K. Jitsukawa, T. Morioka, H. Masuda, H. Ogoshi and
H. Einaga, Inorg. Chim. Acta, 216 (1994) 249.
13 O. P. Gladkikh, T. N. Polynova, M. A. Porai-Koshits and
A. L. Poznyak, Koord. Khim.,18 (1992) 1156.
14 J. R. Bocarsly and J. K. Barton, Inorg. Chem.,
31 (1992) 2827.
Conclusions
15 O. Farver and I. Pecht, Coord. Chem. Rev., 95 (1989) 17.
16 J. Crowe, H. Dobeli, R. Gentz, E. Hochuli, D. Stuber and
K. Henco, Methods Mol. Bio., 31 (1994) 371.
17 S. E. Nieba-Axmann, A. Persson, M. Hamalainen,
F. Edebratt, A. Hansson, J. Lidholm, K. Magnusson,
A. F. Karlsson and A. Pluckthun, Anal. Biochem.,
252 (1997) 217.
The Co, Ni, Cu and Zn nitrilotriacetic acid and glycine
ternary complexes prepared in slightly acidic medium
has an octahedral structure of the general form M
(HNTA) (HGly) (2H2O) in which nitrilotriacetic acid
acts as a tridentate ligand and glycine acts as a
monodentate ligand. Two coordinated water molecules
are required to complete octahedral coordination. These
complexes, thus, behave as dibasic acids. Intermolecular
hydrogen bonding between the suggested octahedral
units leads to the formation of a polymeric structure.
18 K. M. Maloriery, D. R. Shnek, D. Y. Sasaki and
F. H. Arnold, Chem. Biol., 3 (1996) 185.
19 F. H. Arnold, Bio-Technology, 9 (1991) 151.
20 J. Andrew, C. Cartwright, C. May, P. J. Worsfold and
M. J. Keith Roach, Anal. Chim. Acta, 2 (2007) 590.
21 D. Hopgood and R. J. Augelici, J. Am. Chem. Soc.,
90 (1968) 2508.
References
22 A. Albert and E. P. Serjeant, The Determination of
Ionization Constants, (1984), p. 6.
1 S. C. Mojumdar, L. Martiska, D. Valigura and M. Melnik,
J. Therm. Anal. Cal., 81 (2005) 243.
23 E. R. Souaya, W. G. Hanna, E. H. Ismail and N. E. Milad,
Molecules, 5 (2000) 1121.
2 D. Czakis-Sulikowska, A. Czylkowska and
A. Malinowska, J. Therm. Anal. Cal., 67 (2002) 667.
3 E. Jóna, M. Kubranova, P. imon and J. Mrozinski,
J. Therm. Anal. Cal., 46 (1996) 1325.
24 A. Uehara, E. Kyuno and R. Tsuchiya, Bull. Chem. Soc.
Jpn., 40 (1967) 2317.
25 L. J. Bellamy, The Infrared Spectra of Complex
Molecules, Chapman and Hall, London 1975.
26 M. Tsuboi, K. Onishi, I. Nakagawa, T. Shimanouchi and
S. Mizushima, Spectrochim. Acta, 12 (1958) 253.
27 K. Fukushima, T. Onishi, T. Shimanouchi and
S. Mizushima, Spectrochim. Acta, 14 (1959) 236.
4 S. C. Mojumdar, G. Madhurambal and M. T. Saleh,
J. Therm. Anal. Cal., 81 (2005) 205.
5 R. K. Verma, L. Verma, A. Bhushan and B. P. Verma,
J. Therm. Anal. Cal., 90 (2007) 725.
6 H. Olmez, F. Arslan and H. Icbudak, J. Therm. Anal. Cal.,
76 (2004) 793.
Received: May 14, 2008
Accepted: June 11, 2008
OnlineFirst: October 15, 2008
7 D. Czakis-Sulikowska, A. Malinowska and A. Luczak,
J. Therm. Anal. Cal., 78 (2004) 641.
8 D. Czakis-Sulikowsa, J. Radwanska-Doczekalska,
A. Czylkowska and J. Goluchowska, J. Therm. Anal. Cal.,
78 (2004) 501.
DOI: 10.1007/s10973-008-9224-7
258
J. Therm. Anal. Cal., 95, 2009