918
W. Li et al. / Inorganic Chemistry Communications 14 (2011) 916–919
and the Student Research Program (SRP) of South China University of
Technology.
Appendix A. Supplementary material
CCDC 763699 contains the supplementary crystallographic data
for complex 1. The data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be found, in the
online version, at doi:10.1016/j.inoche.2011.03.030.
References
[1] A.G.M. Barrett, M.R. Crimmin, M.S. Hill, P.B. Hitchcock, G. Kociok-Kohn, P.A.
Procopiou, Triazenide complexes of the heavier alkaline earths: synthesis,
characterization, and suitability for hydroamination catalysis, Inorg. Chem. 47
(2008) 7366–7376.
[2] G. Albertin, S. Antoniutti, M. Bedin, J. Castro, S. Garcia-Fontan, Synthesis and
characterization of triazenide and triazene complexes of ruthenium and osmium,
Inorg. Chem. 45 (2006) 3816–3825.
[3] C.J. Adams, R.A. Baber, N.O. Connelly, P. Hardeng, O.D. Hayward, M. Kandiah,
A.G. Orpen, Iodination of triazenide-bridged rhodium and iridium com-
plexes: oxidative addition vs. one-electron oxidation, Dalton Trans. (2007)
1325–1333.
Fig. 2. Connection of [Ni6O6].
[4] C. Tejel, M.A. Ciriano, G. Rios-Moreno, I.T. Dobrinovitch, F.J. Lahoz, L.A. Oro, M. Parra-
Hake, Crescent-shaped rhodium(I) complexes with bis(o-carboxymethylphenyl)
triazenide, Inorg. Chem. 43 (2004) 4719–4726.
[5] N.G. Connelly, O.D. Hayward, P. Klangsinsirikul, A.G. Orpen, Novel dicarbonyl and
carbonylnitrosyl tris(μ-triazenide) dirhodium complexes, Dalton Trans. (2002)
305–306.
[6] D.B. Kimball, M.M. Haley, Triazenes: a versatile tool in organic synthesis, Angew.
Chem. Int. Ed. 41 (2002) 3338–3351.
[7] P. Gantzel, P.J. Walsh, Synthesis and crystal structures of lithium and potassium
triazenide complexes, Inorg. Chem. 37 (1998) 3450–3451.
[8] S. Westhusin, P. Gantzel, P.J. Walsh, Synthesis and crystal structures of magnesium
and calcium triazenide complexes, Inorg. Chem. 37 (1998) 5956–5959.
[9] J.J. Nuricumbo-Escobar, C. Campos-Alvarado, G. Ríos-Moreno, D. Morales-Morales,
P.J. Walsh, M. Parra-Hake, Binuclear palladium(I) and palladium(II) complexes
of ortho-functionalized 1,3-bis(aryl)triazenido ligands, Inorg. Chem. 46 (2007)
6182–6189.
[10] M.K. Rofouei, M. Hematyar, V. Ghoulipour, J.A. Gharamaleki, Syntheses, structures,
thermal behavior and solution studies of two types of Hg(II) complexes with
[1,3-di(2-methoxy)benzene]triazene, Inorg. Chim. Acta 362 (2009) 3777–3784.
[11] M. Horner, G.M. de Oliveira, V.F. Giglio, L. do Canto Visentin, F. Broch, J. Beck,
Bidimensional self-assembling of [HgII(RPhNNNPhR′)2] (R=acetyl, R′=F)
through metal-η4-arene π-interactions and non classical C–H…O bonding:
Synthesis and X-ray characterization of a bis diaryl asymmetric-substituted
triazenide complex polymer of Hg(II), Inorg. Chim. Acta 359 (2006)
2309–2313.
Fig. 3 shows the temperature dependence of χMT and χ−M1 values for
complex 1. The χMT value at room temperature is 6.98 cm3K mol−1
,
close to the expected value of 7.26 cm3K mol−1 for six non-interacting
S=1 centers assuming g=2.20. The χMT value gradually decreases
upon decreasing temperature. Further cooling decreases the χMT value
to 1.78 cm3K mol−1 at 2 K. The 1/χM versus T plot (300–26 K) obeys the
Curie-Weisslaw witha nativeWeiss constant of θ=−39.1 K. The native
θ suggest a dominant antiferromagnetic exchange among the six NiII
ions through oxygen bridges.
The present study shows that 1-[(2-carboxymethyl)benzene]-3-[2-
pyridine]triazene can chelate and bridge metal centers in special frame
to give a polynuclear nickel complex 1. Currently we are exploring
the reactivity with other metals.
Acknowledgement
This work was supported by the Research Foundation for Returned
Chinese Scholars Overseas of Chinese Education Ministry (No.
B7050170), the National Science Foundation of China (No. 20971045),
[12] M. Horner, G.M. de Oliveira, E.G. Koehler, L. do CantoVisentin, Polymeric
bidimensional self-assembling of [HgII(RC6H4NNNC6H4R)2Py] (R=m-acetyl)
through metal-η2, η2-arene π-interactions and non classical C–H#O bonding:
Synthesis and X-ray characterization of
a bis diaryl symmetric-substituted
triazenide complex of Hg(II), J. Organomet. Chem. 691 (2006) 1311–1314.
[13] J.E. O'Connor, G.A. Janusonis, E.R. Corey, 1,3-dimethyltriazenocopper(I), Chem.
Commun. (1968) 445–446.
[14] W.J. Lei, X.W. Tan, L.J. Han, S.Z. Zhan, B.T. Li, Design, synthesis and properties
of a trinuclear copper(I) cluster with a triazenide ligand, Inorg. Chem. Commun.
13 (2010) 1325–1328.
[15] J. Barker, M. Kilner, The coordination chemistry of the amidine ligand, Coord.
Chem. Rev. 133 (1994) 219–300.
[16] G. Vernin, C. Siv, J. Metzger, C. Parkanyi, Synthesis of 1,3-diaryltriazenes and their
derivatives by aprotic decomposition of arylamines, Synthesis (1977) 691–693.
[17] W. Li, X.W. Tan, W.J. Lei, S.Z. Zhan, D.R. Cao, Synthesis, structure and magnetic
properties of a tetranuclear copper(II) complex with a triazenido ligand, Transition
Met. Chem. 35 (2010) 835–839.
[18] Synthesis of Ni6L2L′2(μ3-OH)2(CH3O)2(Ac)2(H2O)4 (1): To a solution, containing
ligand(HL) (0.25 g, 1 mmol)and triethylamine (0.10g, 1 mmol) in dichloromethane/
methanol (30 ml, 1:1), Ni(CH3CO2)2⋅4H2O (0.373 g, 1.5 mmol) was added and
the mixture was stirred for 20 min. The solution was allowed to slowly evaporate
to brown crystals, which were collected and dried in vacuo (0.21 g, 51%).
Calcd for C56H60N16Ni6O20: C, 41.24; H, 3.68; N, 13.75. Found: C, 42.07; H, 3.59; N,
14.11.
[19] M. Venter, I. Haiduc, L. David, O. Cozar, IR and ESR studies on new bis-triazenido
cobalt(II) and copper(II) complexes, J. Mol. Struct. 408/409 (1997) 483–486.
[20] A. Roth, J. Becher, C. Herrmann, H. Go1rls, G. Vaughan, M. Reiher, D. Klemm, W.
Plass, Trinuclear Copper(II) Complexes Derived from Schiff-Base Ligands Based on
a 6-Amino-6-deoxyglucopyranoside: Structural and Magnetic Characterization,
Inorg. Chem. 45 (2006) 10066–10076.
Fig. 3. Plots of the χMT vs T (inset) and χ−M 1 vs T for complex 1 at 2000 Oe.