Journal of the American Chemical Society
Page 8 of 10
(12) Barrett, K. T.; Metrano, A. J.; Rablen, P. R.; Miller, S. J. Spontaneous
(26) Moerner, W. E. Single-Molecule Spectroscopy, Imaging, and Photo-
transfer of chirality in an atropisomerically enriched two-axis system.
Nature 2014, 509, 71−75.
control: Foundations for Super-Resolution Microscopy (Nobel Lec-
ture) Angew. Chem., Int. Ed. 2015, 54, 8067−8093.
1
2
3
4
5
6
7
8
9
(13) Dherbassy, Q.; Djukic, J. P.; Wencel-Delord, J.; Colobert, F. Two ste-
reoinduction events in one C−H activation step: A route towards ter-
phenyl ligands with two atropisomeric axes. Angew. Chem., Int. Ed.
2018, 57, 4668−4672.
(14) Tan, Y; Jia, S; Hu, F; Liu, Y; Peng, L; Li, D; Yan, H. Enantioselective
Construction of Vicinal Diaxial Styrenes and Multiaxis System via Or-
ganocatalysis. J. Am. Chem. Soc. 2018, 140, 16893−16898;
(15) Lotter, D; Castrogiovanni, A; Neuburger M; Sparr, C. Catalyst-Con-
trolled Stereodivergent Synthesis of Atropisomeric Multiaxis Systems.
ACS Cent. Sci., 2018, 4, 656–660.
(27) Denmark, S. E.; Burk, M. T. Lewis base catalysis of bromo- and iodo-
lactonization and cycloetherification. Proc. Nat. Acad. Sci. 2010, 107,
20655–20660.
(28) Metrano, A. J.; Miller, S. J. Peptide-Catalyzed Conversion of Racemic
Oxazol-5(4H)-ones into Enantiomerically Enriched α-Amino Acid De-
rivatives. J. Org. Chem., 2014, 79, 1542–1554.
(29) Selected reviews on chiral guanidines as catalysts, and references
therein: (a) Leow, D.; Tan, C. H. Chiral Guanidine Catalyzed Enanti-
oselective Reactions. Chem. Asian J. 2009, 4, 488–507. (b) Selig, P.
Guanidine organocatalysis. Synthesis 2013, 45, 703–718. (c) Ho-
soya, K.; Odagi, M.; Nagasawa, K. Guanidine organocatalysis for en-
antioselective carbon-heteroatom bond-forming reactions. Tetrahe-
dron Lett. 2018, 59, 687–696. (d) Dong, S.; Feng, X.; Liu, X. Chiral
Guanidines and Their Derivatives in Asymmetric Synthesis. Chem.
Soc. Rev. 2018, 47, 8525–8540. (e) Chou, H. C.; Leow, D.; Tan, C.
H. Recent Advances in Chiral Guanidine-Catalyzed Enantioselective
Reactions. Chem. Asian J. 2019, 14, 3803–3822.
(30) Selected examples of chiral guanidines as Bronsted basic catalysts:
(a) Isobe, T.; Fukuda, K.; Araki, Y.; Ishikawa, T. Modified guanidines
as chiral superbases: the first example of asymmetric silylation of sec-
ondary alcohols. Chem. Commun. 2001, 3, 243−244. (b) Ishikawa,
T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Modified
guanidines as chiral superbases: application to asymmetric Michael
reaction of glycine imine with acrylate or its related compounds.
Chem. Commun. 2001, 3, 245−246. (c) Terada, M.; Ube, H.; Yaguchi,
Y. Axially chiral guanidine as enantioselective base catalyst for 1,4-
addition reaction of 1,3-dicarbonyl compounds with conjugated ni-
troalkenes. J. Am. Chem. Soc. 2006, 128, 1454−1455. (d) Terada,
M.; Nakano, M.; Ube, H. Axially chiral guanidine as highly active and
enantioselective catalyst for electrophilic amination of unsymmetri-
cally substituted 1,3-dicarbonyl compounds. J. Am. Chem. Soc. 2006,
128, 16044−16045. (e) Yu, Z. P.; Liu, X. H.; Zhou, L.; Lin, L. L.; Feng,
X. M. Bifunctional Guanidine via an Amino Amide Skeleton for Asym-
metric Michael Reactions of β-Ketoesters with Nitroolefins: A Concise
Synthesis of Bicyclic β-Amino Acids. Angew.Chem. Int. Ed. 2009, 48,
5195–5198. (f) Dong, S. X.; Liu, X. H.; Chen, X. H.; Mei, F.; Zhang,
Y. L.; Gao, B.; Lin, L. L.; Feng, X. M. Chiral Bisguanidine-Catalyzed
Inverse-Electron-Demand Hetero-Diels-Alder Reaction of Chalcones
with Azlactones. J. Am. Chem. Soc. 2010, 132, 10650–10651.
(31) Our group has previously studied guanidinylated peptides as chiral
ligands in Cu-catalyzed cross-coupling. See: (a) Kim, B.; Chinn, A. J.;
Fandrick, D. R.; Senanayake, C. H.; Singer, R. A.; Miller, S. J. Distal
Stereocontrol Using Guanidinylated Peptides as Multifunctional Lig-
ands: Desymmetrization of Diarylmethanes via Ullman Cross-Cou-
pling. J. Am. Chem. Soc. 2016, 138, 7939−7945. (b) Chinn, A. J.; Kim,
B.; Kwon, Y.; Miller, S. J. Enantioselective Intermolecular C−O Bond
Formation in the Desymmetrization of Diarylmethines Employing a
Guanidinylated Peptide-Based Catalyst. J. Am. Chem. Soc. 2017,
139, 18107–18114. (c) Kwon, Y.; Chinn, A.; Kim, B.; Miller, S. J. Di-
vergent Control of Point and Axial Stereogenicity: Catalytic Enanti-
oselective C−N Bond Forming Cross-Coupling and Catalyst-Con-
trolled Atroposelective Cyclodehydration. Angew. Chem., Int. Ed.
2018, 57, 6251–6255.
(16) Hu Y-L.; Wang, Z.; Yang, H; Chen, J.; Wu, Z-B.; Lei, Y.; Zhou, L.
Conversion of two stereocenters to one or two chiral axes: atro-
poselective synthesis of 2,3-diarylbenzoindoles. Chem. Sci. 2019, 10,
6777−6784.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(17) Jia, S; Li, S; Liu, Y; Qin, W; Yan, H. Enantioselective Control of Both
Helical and Axial Stereogenic Elements though an Organocatalytic
Approach. Angew. Chem. Int. Ed. 2019, 58, 18496−18501.
(18) Bao, X; Rodriguez, J; Bonne, D. Bidirectional enantioselective syn-
thesis of bis-benzofuran atropisomeric oligoarenes featuring two dis-
tal C–C stereogenic axes. Chem. Sci. 2020, 11, 403−408.
(19) Takano, H; Shiozawa, N; Imai, Y; Kanyiva, K.S.; Shibata, T. Catalytic
Enantioselective Synthesis of Axially Chiral Polycyclic Aromatic Hy-
drocarbons (PAHs) via Regioselective C−C Bond Activation of Bi-
phenylenes. J. Am. Chem. Soc. 2020, 142, 4714−4722.
(20) For selected reviews on DKR see: Noyori, R.; Tokunaga, M.;
Kitamura, M. Stereoselective Organic Synthesis via Dynamic Kinetic
Resolution. Bull. Chem. Soc. Jpn. 1995, 68, 36−55. (b) Huerta, F. F.;
Minidis, A. B. E.; Backvall, J. E. Racemisation in asymmetric synthe-
sis. Dynamic kinetic resolution and related processes in enzyme and
metal catalysis. Chem. Soc. Rev. 2001, 30, 321−331. (c) Pellissier,
H. Organocatalyzed Dynamic Kinetic Resolution. Adv. Synth. Catal.
2011, 353, 659−676.
(21) Selected examples: (a) Bringmann, G.; Hartung, T. First Atropo‐En-
antioselective Ring Opening of Achiral Biaryls Containing Lactone
Bridges with Chiral Hydride‐Transfer Reagents Derived from Borane.
Angew. Chem., Int. Ed. Engl. 1992, 31, 761–762. (b) Bringmann, G.;
Hartung, T. Atropo-enantioselective biaryl synthesis by stereocon-
trolled cleavage of configuratively labile lactone-bridged precursors
using chiral H-nucleophiles. Tetrahedron 1993, 49, 7891–7902. (c)
Bringmann, G.; Breuning, M.; Walter, R.; Wuzik, A.; Peters, K.; Pe-
ters, E.-M. Synthesis of Axially Chiral Biaryls by Atropo-Diastereose-
lective Cleavage of Configurationally Unstable Biaryl Lactones with
Menthol-Derived O-Nucleophiles. Eur. J. Org. Chem. 1999, 3047–
3055.
(22) Selected examples: (a) Ashizawa, T.; Tanaka, S.; Yamada, T. Cata-
lytic atropo-enantioselective reduction of biaryl lactones to axially chi-
ral biaryl compounds. Org. Lett. 2008, 10, 2521–2524. (b) Yu, C. G.;
Huang, H.; Li, X. M.; Zhang, Y. T.; Wang, W. Dynamic Kinetic Reso-
lution of Biaryl Lactones via a Chiral Bifunctional Amine Thiourea-
Catalyzed Highly Atropoenantioselective Transesterification. J. Am.
Chem. Soc. 2016, 138, 6956−6959. (c) Mori, K.; Itakura, T.; Akiyama,
T. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by
Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Cata-
lyzed Dynamic Kinetic Resolution. Angew. Chem., Int. Ed. 2016, 55,
11642–11646.
(32) Metrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Hurt-
ley, A. E.; Miller, S. J. Diversity of Secondary Structure in Catalytic
Peptides with β-Turn-Biased Sequences J. Am. Chem. Soc. 2017,
139, 492−516.
(23) Bringmann, G.; Menche, D. Stereoselective Total Synthesis of Axially
Chiral Natural Products via Biaryl Lactones. Acc. Chem. Res. 2001,
34, 615–624.
(33) (a) Eckert, F.; Leito, I.; Kaljurand, I.; Kutt, A.; Klamt, A.; Diedenhofen,
M., Prediction of Acidity in Acetonitrile Solution with COSMO-RS. J.
Comput. Chem. 2009, 30, 799−810. (b) Muckerman, J. T.; Skone, J.
H.; Ning, M.; Wasada-Tsutsui, Y., Toward the accurate calculation of
pKa values in water and acetonitrile. Bba-Bioenergetics 2013, 1827,
882−891. (c) Raamat, E.; Kaupmees, K.; Ovsjannikov, G.; Trummal,
A.; Kutt, A.; Saame, J.; Koppel, I.; Kaljurand, I.; Lipping, L.; Rodima,
T.; Pihl, V.; Koppel, I. A.; Leito, I., Acidities of strong neutral Bronsted
acids in different media. J. Phys. Org. Chem. 2013, 26, 162−170. (d)
Himmel, D.; Radtke, V.; Butschke, B.; Krossing, I., Basic Remarks on
Acidity. Angew. Chem., Int. Ed. 2018, 57, 4386−4411. (e)Tshepele-
vitsh, S.; Kutt, A.; Lokov, M.; Kaljurand, I.; Saame, J.; Heering, A.;
Plieger, P. G.; Vianello, R.; Leito, I. On the Basicity of Organic Bases
in Different Media. Eur. J. Org. Chem. 2019, 6735–6748.
(24) (a) Gustafson, J. L.; Lim, D.; Miller, S. J. Dynamic Kinetic Resolution
of Biaryl Atropisomers via Peptide-Catalyzed Asymmetric Bromina-
tion. Science, 2010, 328, 1251–1255. (b) Barrett, K. T.; Miller, S. J.
Enantioselective Synthesis of Atropisomeric Benzamides through
Peptide-Catalyzed Bromination. J. Am. Chem. Soc. 2013, 135, 2963–
2966. (c) Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J., En-
antioselective Synthesis of 3-Arylquinazolin-4(3H)-ones via Peptide-
Catalyzed Atroposelective Bromination. J. Am. Chem. Soc. 2015,
137, 12369–12377. (d) Metrano, A. J.; Abascal. N. C.; Mercado, B.
Q.; Paulson, E. K., Miller, S. J. Structural Studies of β-Turn-Contain-
ing Peptide Catalysts for Atroposelective Quinazolinone Bromination.
Chem. Commun. 2016, 52, 4816−4819.
(25) (a) Yin, H.; Lee, G. I.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Orner, B.
P.; Ernst, J. T.; Wang, H. G.; Sebti, S. M.; Hamilton, A. D. Terphenyl-
based bak BH3 α-helical proteomimetics as low-molecular-weight an-
tagonists of Bcl-X-L J. Am. Chem. Soc. 2005, 127, 10191−10196. (b)
Yin, H.; Lee, G. I.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti,
S. M.; Hamilton, A. D. Terphenyl-based helical mimetics that disrupt
the p53/HDM2 interaction. Angew. Chem., Int. Ed. 2005, 44,
2704−2707.
(34) Golebiewski, W. M.; Gucma, M. Applications of N-chlorosuccinimide
in organic synthesis. Synthesis 2007, 23, 3599–3619.
(35) For a recent example employing guanidines as electrophilic chlorin-
ating reagents see: Rodriguez, R. A.; Pan, C. M.; Yabe, Y.; Kawa-
mata, Y.; Eastgate, M. D.; Baran, P. S. Palau'chlor: A Practical and
Reactive Chlorinating Reagent. J. Am. Chem. Soc. 2014, 136, 6908–
6911.
(36) Selected examples and references therein: (a) Whitehead, D. C.;
Yousefi, R.; Jaganathan, A.; Borhan, B. An Organocatalytic
8
ACS Paragon Plus Environment