Journal of the American Chemical Society
Page 10 of 22
(63) Ludlow, J. M., 3rd; Xie, T.; Guo, Z.; Guo, K.; Saunders,
M. J.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R.
Directed Flexibility: Self-Assembly of Supramolecular
Tetrahedron. Chem. Commun. 2015, 51, 3820-3823.
(64) Wang, Y. C.; Liang, Y. P.; Cai, J. Y.; He, Y. J.; Lee, Y. H.;
Chan, Y. T. Metal Ion-Modulated Self-Assembly of Pseudo-
Suit[3]anes Using Crown Ether-Based Terpyridine Metalloprisms.
Chem. Commun. 2016, 52, 12622-12625.
(65) Xie, T. Z.; Endres, K. J.; Guo, Z.; Ludlow, J. M.;
Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G.
R. Controlled Interconversion of Superposed-Bistriangle,
Octahedron, and Cuboctahedron Cages Constructed Using a
Single, Terpyridinyl-Based Polyligand and Zn2+. J. Am. Chem. Soc.
2016, 138, 12344.
(66) Newkome, G. R.; Wang, P.; Moorefield, C. N.; Cho, T. J.;
Mohapatra, P. P.; Li, S.; Hwang, S. H.; Lukoyanova, O.; Echegoyen,
L.; Palagallo, J. A.; Iancu, V.; Hla, S. W. Nanoassembly of a Fractal
Polymer: A Molecular ‘‘Sierpinski Hexagonal Gasket’’. Science
2006, 312, 1782-1785.
Macrocycles and Cages through Dynamic Heteroleptic
Terpyridine Complexation. Chem. Eur. J. 2018, 24, 9274-9284.
(78) Fu, J. H.; Wang, S. Y.; Chen, Y. S.; Prusty, S.; Chan, Y. T.
One-Pot Self-Assembly of Stellated Metallosupramolecules from
Multivalent and Complementary Terpyridine-Based Ligands. J.
Am. Chem. Soc. 2019, 141, 16217-16221.
(79) Brocker, E. R.; Anderson, S. E.; Northrop, B. H.; Stang,
P. J.; Bowers, M. T. Structures of Metallosupramolecular
Coordination Assemblies Can Be Obtained by Ion Mobility
Spectrometry-Mass Spectrometry. J. Am. Chem. Soc. 2010, 132,
13486-13494.
(80) Ujma, J.; De Cecco, M.; Chepelin, O.; Levene, H.; Moffat,
C.; Pike, S. J.; Lusby, P. J.; Barran, P. E. Shapes of Supramolecular
Cages by Ion Mobility Mass Spectrometry. Chem. Commun. 2012,
48, 4423-4425.
1
2
3
4
5
6
7
8
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(81)
Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The
Power of Ion Mobility-Mass Spectrometry for Structural
Characterization and the Study of Conformational Dynamics.
Nat. Chem. 2014, 6, 281-294.
(82) Kalenius, E.; Groessl, M.; Rissanen, K. Ion Mobility–
Mass Spectrometry of Supramolecular Complexes and
Assemblies. Nat. Rev. Chem. 2018, 3, 4-14.
(83) Shvartsburg, A. A.; Jarrold, M. F. An Exact Hard-Spheres
Scattering Model for the Mobilities of Polyatomic Ions. Chem.
Phys. Lett. 1996, 261, 86-91.
(84) Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz,
G. C.; Jarrold, M. F. Structural Information from Ion Mobility
Measurements: Effects of the Long-Range Potential. J. Phys.
Chem. 1996, 100, 16082-16086.
(85) Uetrecht, C.; Rose, R. J.; van Duijn, E.; Lorenzen, K.;
Heck, A. J. Ion Mobility Mass Spectrometry of Proteins and
Protein Assemblies. Chem. Soc. Rev. 2010, 39, 1633-1655.
(86) Jurneczko, E.; Barran, P. E. How Useful is Ion Mobility
Mass Spectrometry for Structural Biology? The Relationship
between Protein Crystal Structures and Their Collision Cross
Sections in the Gas Phase. Analyst 2011, 136, 20-28.
(87) Chan, Y. T.; Li, X.; Moorefield, C. N.; Wesdemiotis, C.;
Newkome, G. R. Towards Larger Polygonal Architectures:
Synthesis and Characterization of Iron(II)– and Ruthenium(II)–
Bis(terpyridine) Metallomacrocycles. Chem. Eur. J. 2011, 17, 7750-
7754.
(88) Mandelbrot, B. B. The Fractal Geometry of Nature, W.
H. Freeman and Company 1982.
(89) Zhang, X.; Li, N.; Gu, G. C.; Wang, H.; Nieckarz, D.;
Szabelski, P.; He, Y.; Wang, Y.; Xie, C.; Shen, Z. Y.; Lu, J. T.; Tang,
H.; Peng, L. M.; Hou, S. M.; Wu, K.; Wang, Y. F. Controlling
Molecular Growth between Fractals and Crystals on Surfaces. ACS
Nano 2015, 9, 11909-11915.
(67) Chan, Y. T.; Li, X.; Yu, J.; Carri, G. A.; Moorefield, C. N.;
Newkome, G. R.; Wesdemiotis, C. Design, Synthesis, and
Traveling Wave Ion Mobility Mass Spectrometry Characterization
of Iron(II)- and Ruthenium(II)-Terpyridine Metallomacrocycles.
J. Am. Chem. Soc. 2011, 133, 11967-11976.
(68) Schultz, A.; Li, X.; Barkakaty, B.; Moorefield, C. N.;
Wesdemiotis, C.; Newkome, G. R. Stoichiometric Self-Assembly
of Isomeric, Shape-Persistent, Supramacromolecular Bowtie and
Butterfly Structures. J. Am. Chem. Soc. 2012, 134, 7672-7675.
(69) Zhang, Z.; Wang, H.; Wang, X.; Li, Y.; Song, B.;
Bolarinwa, O.; Reese, R. A.; Zhang, T.; Wang, X. Q.; Cai, J.; Xu, B.;
Wang, M.; Liu, C.; Yang, H. B.; Li, X. Supersnowflakes: Stepwise
Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped
Supramolecules. J. Am. Chem. Soc. 2017, 139, 8174-8185.
(70) Li, Y.; Jiang, Z.; Wang, M.; Yuan, J.; Liu, D.; Yang, X.;
Chen, M.; Yan, J.; Li, X.; Wang, P. Giant, Hollow 2D
Metalloarchitecture: Stepwise Self-Assembly of a Hexagonal
Supramolecular Nut. J. Am. Chem. Soc. 2016, 138, 10041-10046.
(71)
Jiang, Z.; Li, Y.; Wang, M.; Liu, D.; Yuan, J.; Chen, M.;
Wang, J.; Newkome, G. R.; Sun, W.; Li, X.; Wang, P. Constructing
High-Generation Sierpinski Triangles by Molecular Puzzling.
Angew. Chem. Int. Ed. 2017, 56, 11450-11455.
(72) Jiang, Z.; Li, Y.; Wang, M.; Song, B.; Wang, K.; Sun, M.;
Liu, D.; Li, X.; Yuan, J.; Chen, M.; Guo, Y.; Yang, X.; Zhang, T.;
Moorefield, C. N.; Newkome, G. R.; Xu, B.; Li, X.; Wang, P. Self-
Assembly of a Supramolecular Hexagram and a Supramolecular
Pentagram. Nat. Commun. 2017, 8, 15476.
(73) Chakraborty, S.; Hong, W.; Endres, K. J.; Xie, T. Z.;
Wojtas, L.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R.
Terpyridine-Based, Flexible Tripods: From a Highly Symmetric
Nanosphere to Temperature-Dependent, Irreversible, 3D
Isomeric Macromolecular Nanocages. J. Am. Chem. Soc. 2017, 139,
3012-3020.
(74) Chen, M.; Wang, J.; Wang, S. C.; Jiang, Z.; Liu, D.; Liu,
Q.; Zhao, H.; Yan, J.; Chan, Y. T.; Wang, P. Truncated Sierpinski
Triangular Assembly from a Molecular Mortise-Tenon Joint. J.
Am. Chem. Soc. 2018, 140, 12168-12174.
(75) Wang, L.; Liu, R.; Gu, J.; Song, B.; Wang, H.; Jiang, X.;
Zhang, K.; Han, X.; Hao, X. Q.; Bai, S.; Wang, M.; Li, X.; Xu, B.; Li,
X. Self-Assembly of Supramolecular Fractals from Generation 1 to
5. J. Am. Chem. Soc. 2018, 140, 14087-14096.
(76) Song, B.; Kandapal, S.; Gu, J.; Zhang, K.; Reese, A.; Ying,
Y.; Wang, L.; Wang, H.; Li, Y.; Wang, M.; Lu, S.; Hao, X. Q.; Li, X.;
Xu, B.; Li, X. Self-Assembly of Polycyclic Supramolecules Using
Linear MetalOrganic Ligands. Nat. Commun. 2018, 9, 4575.
(77) Wang, S. Y.; Huang, J. Y.; Liang, Y. P.; He, Y. J.; Chen, Y.
S.; Zhan, Y. Y.; Hiraoka, S.; Liu, Y. H.; Peng, S. M.; Chan, Y. T.
Multicomponent Self-Assembly of Metallo-Supramolecular
(90) Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner,
J.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Assembling Molecular
Sierpiński Triangle Fractals. Nat. Chem. 2015, 7, 389-393.
(91)
Sarkar, R.; Guo, K.; Moorefield, C. N.; Saunders, M. J.;
Wesdemiotis, C.; Newkome, G. R. One-Step Multicomponent
Self-Assembly of a First-Generation Sierpiński Triangle: From
Fractal Design to Chemical Reality. Angew. Chem., Int. Ed. 2014,
53, 12182-12185.
(92) Li, N.; Zhang, X.; Gu, G.-C.; Wang, H.; Nieckarz, D.;
Szabelski, P.; He, Y.; Wang, Y.; Lü, J.-T.; Tang, H.; Peng, L.-M.;
Hou, S.-M.; Wu, K.; Wang, Y.-F. Sierpiński-Triangle Fractal
Crystals with the C3v Point Group. Chin. Chem. Lett. 2015, 26, 1198-
1202.
(93) Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. On-surface
Construction of a Metal-Organic Sierpiński Triangle. Chem.
Commun. 2015, 51, 14164-14166.
(94) Zhang, X.; Li, N.; Liu, L.; Gu, G.; Li, C.; Tang, H.; Peng,
L.; Hou, S.; Wang, Y. Robust Sierpiński Triangle Fractals on
ACS Paragon Plus Environment