Page 5 of 7
ACS Catalysis
1
2
3
4
5
6
7
8
9
(6) (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling
synthesis of β,β-diborylstyrenes. It is believed that this study
highlights the considerable potential of heterogeneous
catalysts for various functional group transformations.
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–
2483. (b) Kohta, S.; Lahiri, K.; Kashinath, D. Recent applications of
the Suzuki–Miyaura cross-coupling reaction in organic synthesis.
Tetrahedron 2002, 58, 9633–9695. (c) Matteson, D. S. Boronic Esters
in Stereodirected Synthesis. Tetrahedron 1989, 45, 1859–1885.
(7) (a) Trost, B. M.; Ball, Z. T. Addition of Metalloid Hydrides to
Alkynes: Hydrometallation with Boron, Silicon, and Tin. Synthesis
2005, 853–887. (b) Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur,
J.-J.; Arseniyadis, S.; Smietana, M. Recent developments in alkyne
borylations. Tetrahedron 2014, 70, 8431–8452. (c) Yoshida, H.
Borylation of Alkynes under Base/Coinage Metal Catalysis: Some
Recent Developments. ACS Catal. 2016, 6, 1799–1811.
(8) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. Palladium-
Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-
Alkenyl Halides or Triflates:ꢀ Convenient Synthesis of Unsymmetrical
1,3-Dienes via the Borylation-Coupling Sequence. J. Am. Chem. Soc.
2002, 124, 8001–8006.
(9) Morrill, C.; Funk, T. W.; Grubbs, R. H. Synthesis of tri-substituted
vinyl boronates via ruthenium-catalyzed olefin cross-metathesis.
Tetrahedron Lett. 2004, 45, 7733–7736.
(10) Reid, W. B.; Spillane, J. J.; Krause, S. B.; Watson, D. A. Direct
Synthesis of Alkenyl Boronic Esters from Unfunctionalized Alkenes:
A Boryl-Heck Reaction. J. Am. Chem. Soc. 2016, 138, 5539–5542.
(11) Geier, S. J.; Westcott, S. A. Dehydrogenative borylation: the
dark horse in metal-catalyzed hydroborations and diborations? Rev.
Inorg. Chem. 2015, 35, 69–79.
(12) Morimoto, M.; Miura, T.; Murakami, M. Rhodium-Catalyzed
Dehydrogenative Borylation of Aliphatic Terminal Alkenes with
Pinacolborane. Angew. Chem. Int. Ed. 2015, 54, 12659–12663.
(13) (a) Wang, C.; Wu, C.; Ge, S. Iron-Catalyzed E-Selective
Dehydrogenative Borylation of Vinylarenes with Pinacolborane. ACS
Catal. 2016, 6, 7585–7589. (b) Jiang, S.; Quintero-Duque, S.; Roisnel,
T.; Dorcet, V.; Grellier, M.; Sabo-Etienne, S.; Darcel, C.; Sortais, J.-B.
Direct synthesis of dicarbonyl PCP-iron hydride complexes and
catalytic dehydrogenative borylation of styrene. Dalton Trans. 2016,
45, 11101–11108.
(14) Mazzacano, T. J.; Mankad, N. P. Dehydrogenative Borylation
and Silylation of Styrenes Catalyzed by Copper-Carbenes. ACS Catal.
2017, 7, 146–149.
(15) (a) Takaya, J.; Kirai, N.; Iwasawa, N. Efficient Synthesis of
Diborylalkenes from Alkenes and Diboron by a New PSiP-Pincer
Palladium-Catalyzed Dehydrogenative Borylation. J. Am. Chem. Soc.
2011, 133, 12980–12983. (b) Kirai, N.; Iguchi, S.; Ito, T.; Takaya, J.;
Iwasawa, N. PSiP-Pincer Type Palladium-Catalyzed Dehydrogenative
Borylation of Alkenes and 1,3-Dienes. Bull. Chem. Soc. Jpn. 2013, 86,
784–799.
ASSOCIATED CONTENT
Supporting Information
The supporting information is available free of charge on the ACS
Publication website: experimental details, additional experimental
results, characterization data, and NMR spectra (PDF).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
*E-mail: kyama@appchem.t.u-tokyo.ac.jp, t-jin@mail.ecc.u-
tokyo.ac.jp
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was financially supported by JSPS KAKENHI Grant
No. 15H05797 in Precisely Designed Catalysts with Customized
Scaffolding. D. Y. was supported by the JSPS through the
Research Fellowship for Young Scientists (Grant No. 18J21337).
REFERENCES
(1) (a) Fine Chemicals through Heterogeneous Catalysis; Sheldon, R.
A., van Bekkum, H., Eds.; Wiley-VCH: Weinheim, 2001. (b) Climent,
M. J.; Corma, A.; Iborra, S. Heterogeneous Catalysts for the One-Pot
Synthesis of Chemicals and Fine Chemicals. Chem. Rev. 2011, 111,
1072–1133.
(2) (a) Paste, J. C.; Browne, D. L.; Ley, S. V. Flow chemistry
syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869.
(b) Kobayashi, S. Flow “Fine” Synthesis: High Yielding and Selective
Organic Synthesis by Flow Methods. Chem. Asian. J. 2016, 11, 425–
436. (c) Porta, R.; Benaglia, M.; Puglisi, A. Flow Chemistry: Recent
Developments in the Synthesis of Pharmaceutical Products. Org.
Process. Res. Dev. 2016, 20, 2–25.
(3) (a) Yun, J. Copper(I)-Catalyzed Boron Addition Reactions of
Alkynes with Diboron Reagents. Asian. J. Org. Chem. 2013, 2, 1016–
1025. (b) Tsuji, Y.; Fujihara, T. Copper-Catalyzed Transformations
Using Cu–H, Cu–B, and Cu–Si as Active Catalyst Species. Chem.
Rec. 2016, 16, 2294–2313. (c) Semba, K.; Fujihara, T.; Terao, J.;
Tsuji, Y. Copper-catalyzed borylative transformations of non-polar
carbon–carbon unsaturated compounds employing borylcopper as an
active catalyst species. Tetrahedron 2015, 71, 2183–2197. (d) Collins,
B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Asymmetric
Synthesis of Secondary and Tertiary Boronic Esters. Angew. Chem.
Int. Ed. 2017, 56, 11700–11733.
(4) Recently, dehydrogenative borylation of alkynes using first row
transition metal catalysis has been reported: (a) Wei, D.; Carboni, B;
Sortais, J.-B.; Darcel, C. Iron-Catalyzed Dehydrogenative Borylation
of Terminal Alkynes. Adv. Synth. Catal. 2018, 360, 3649–3654. (b)
Romero, E.-A.; Jazzar, R.; Bertrand, G. (CAAC)CuX-catalyzed hy-
droboration of terminal alkynes with pinacolborane directed by the X-
ligand. J. Organomet. Chem. 2017, 829, 11–13. (c) Romero, E.-A.;
Jazzar, R.; Bertrand, G. Copper-catalyzed dehydrogenative borylation
of terminal alkynes with pinacolborane. Chem. Sci. 2017, 8, 165–168.
(5) (a) Grirrane, A.; Corma, A.; Garcia, H. Stereoselective Single
(Copper) or Double (Platinum) Boronation of Alkynes Catalyzed by
Magnesia-Supported Copper Oxide or Platinum Nanoparticles. Chem.
Eur. J. 2011, 17, 2467–2478. (b) Zhou, X.-F.; Wu, Y.-D.; Dai, J.-J.;
Li, Y.-J.; Huang, Y.; Xu, H.-J. Borylation of primary and secondary
alkyl bromides catalyzed by Cu2O nanoparticles. RSC Adv. 2015, 5,
46672–46676. (c) Zhou, X.-F.; Sun, Y.-Y.; Wu, Y.-D.; Dai, J.-J.; Xu,
J.; Huang, Y.; Xu, H.-J. Borylation and selective reduction of α,β-
unsaturated ketones under mild conditions catalyzed by Cu
nanoparticles. Tetrahedron 2016, 72, 5691–5698.
(16) Wen, H.; Zhang, L.; Zhu, S.; Liu, G.; Huang, Z. Stereoselective
Synthesis of Trisubstituted Alkenes via Cobalt-Catalyzed Double
Dehydrogenative Borylations of 1-Alkenes. ACS Catal. 2017, 7,
6419–6425.
(17) Supported copper hydroxide catalysts were prepared according to
our previous reports: (a) Oishi, T.; Katayama, T.; Yamaguchi, K.;
Mizuno, N.; Heterogeneously Catalyzed Efficient Alkyne–Alkyne
Homocoupling by Supported Copper Hydroxide on Titanium Oxide.
Chem. Eur. J. 2009, 15, 7539–7542. (b) Yamaguchi, K.; Oishi, T.;
Katayama, T.; Mizuno, N. A Supported Copper Hydroxide on
Titanium Oxide as an Efficient Reusable Heterogeneous Catalyst for
1,3-Dipolar Cycloaddition of Organic Azides to Terminal Alkynes.
Chem. Eur. J. 2009, 15, 10464–10472. (c) Oishi, T.; Yamaguchi, K.;
Mizuno, N. Conceptual Design of Heterogeneous Oxidation Catalyst:
Copper Hydroxide on Manganese Oxide-Based Octahedral Molecular
Sieve for Aerobic Oxidative Alkyne Homocoupling. ACS Catal. 2011,
1, 1351–1354.
(18) The XRD patterns of freshly prepared Cu(OH)x/CeO2 and
Cu(OH)x/Al2O3 were the same as those of the parent CeO2 and Al2O3
support, respectively; no signals due to copper metal (clusters) and
copper oxides were observed (Figure S1).
(19) Kim, I.; Itagaki, S.; Jin, X.; Yamaguchi, K.; Mizuno, N.
Heterogeneously catalyzed self-condensation of primary amines to
ACS Paragon Plus Environment