R. J. Hammond et al. / Tetrahedron Letters 48 (2007) 1217–1219
1219
overexpresseda
B.Y. reductase
OH
*
4. Csuk, R.; Glanzer, B. I. Chem. Rev. 1991, 91, 49–96.
O
CN
CN
5. Kaluzna, I. A.; Matsuda, T.; Sewell, A. K.; Stewart, J. D.
J. Am. Chem. Soc. 2004, 126, 12827–12832, and references
cited therein.
1
2b
6
. Rodriguez, S.; Kayser, M. M.; Stewart, J. D. J. Am. Chem.
Soc. 2001, 66, 733–738.
Scheme 3. Whole-cell reduction of (1) using engineered E. coli.
LB medium with 30 ug/mL kanamycin was inoculated with a single
colony of E. coli (containing either YOL151w or YGL039w overex-
pressed gene) and shaken 15 h at 37 °C. This preculture was diluted
a
7. Kaluzna, I. A.; Feske, B. D.; Wittayanan, W.; Ghiviriga,
I.; Stewart, J. D. J. Org. Chem. 2005, 70, 342–345.
8
. Feske, B. D.; Kaluzna, I. A.; Stewart, J. D. J. Org. Chem.
005, 70, 9654–9657.
. Feske, B. D.; Stewart, J. D. Tetrahedron: Asymmetry 2005,
6, 3124–3127.
2
1
:100 into 2 L of the same medium and shaken 2.5 h at 37 °C with a
9
stir rate of 400 rpm. Upon reaching an O.D.600 = 0.6, the cell culture
was cooled to 20 °C, and isopropylthio-b-D-galactoside was added to a
final concentration of 100 lM and shaken for 14 h. The cells were
collected by centrifugation (5000 g for 10 min at 4 °C) and then
resuspended in 1 L of 100 mM phosphate buffer (pH = 7) containing
g/L glucose. The bioconversion was carried out at 20 °C with a stir
rate of 400 rpm. The portions of neat (1) were added in small
increments (50 mg) and monitored by GCMS for conversion.
IR (Neat) 3421, 3032, 2915, 2256, 1454, 1054 cm
1
1
1
1
0. Pandey, R. J.; Fernandes, R. A.; Kumar, P. Tetrahedron
Lett. 2002, 43, 4425–4426.
1. Watanabe, M.; Murata, K.; Ikariya, T. J. Org. Chem.
2
002, 67, 1712–1715.
2. Li, Y.; Li, Z.; Wang, Q.; Tao, F. Org. Biomol. Chem. 2005,
, 2513–2518.
13. Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q. Org. Lett.
004, 6, 169–172.
4
3
b
À1
1
;
H NMR
2
(
1
1
300 MHz, CDCl ) d: 7.38 (s, 5H), 5.01 (t, 1H, J = 6.0 Hz), 3.23 (br s,
3
13
14. Noriyuki, K.; Makoto, U.; Daisuke, M.; Naoaki, T.;
Yoshihiko, Y. European Patent WO2006046455, 2006.
5. Suto, Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.;
Shibisaki, M. Org. Lett. 2003, 5, 3147–3150.
H), 2.73 (d, 2H, J = 6.0 Hz); C NMR (300 MHz, CDCl
3
) d: 141.1,
29.0, 128.9, 125.6, 117.4, 70.1, 28.0; mass (EI) 147, 129, 107, 79, 77.
1
1
6. Granander, J.; Eriksson, J.; Hilmersson, G. Tetrahedron:
Asymmetry 2006, 17, 2021–2027.
under non-growing conditions versus conditions that
allow bacterial reproduction and growth.
17. Suto, Y.; Tsuji, R.; Kanai, M.; Shibisaki, M. Org. Lett.
005, 7, 3757–3760.
2
1
8. Itoh, T.; Mitsukura, K.; Kanphai, W.; Takagi, Y.;
Kihara, H.; Tsukube, H. J. Org. Chem. 1997, 62, 9165–
3. Conclusions
9
172.
1
2
9. Kamal, A.; Ramesh Khanna, G. B.; Krishnaji, T.; Ramu,
R. Bioorg. Med. Chem. Lett. 2005, 15, 613–615.
0. Pamies, O.; Backvall, J. Adv. Synth. Catal. 2001, 343, 726–
The reduction of b-keto nitriles using whole-cell cataly-
sis has been a difficult task due to the dominating mech-
anism affording alkylated products. By using the
heterologous overexpression system the alkylated prod-
uct (6) is nearly eliminated. In addition, this method
allows for the synthesis of both antipodes of 3-hydro-
xy-3-phenylpropanitrile (2), which demonstrates the
advantage of using a single overexpressed bakers’ yeast
reductase versus bakers’ yeast alone. By using this sys-
tem, a formal biocatalytic synthesis of both antipodes
of fluoxetine (3), atomoxetine (4) and nisoxetine (5)
has been demonstrated.
7
31.
21. Itoh, T.; Takagi, Y. Chem. Lett. 1989, 1505–1506.
22. Itoh, T.; Takagi, Y.; Fujisawa, T. Tetrahedron Lett. 1989,
30, 3811–3812.
2
2
2
2
2
2
3. Itoh, T.; Fukuda, T.; Fujisawa, T. Chem. Soc. Jpn. 1989,
6
2, 3851–3855.
4. Smallridge, A. J.; Ten, A.; Trewhella, M. Tetrahedron
Lett. 1998, 39, 5121–5124.
5. Florey, P.; Smallridge, A. J.; Ten, A.; Trewhella, M. A.
Org. Lett. 1999, 1, 1879–1880.
6. Delhi, J. R.; Gotor, V. Tetrahedron: Asymmetry 2001, 12,
1
485–1492.
7. Gotor, V.; Delhi, J. R.; Rebolledo, F. J. Chem. Soc.,
Perkin Trans. 1 2000, 307–309.
8. Delhi, J. R.; Gotor, V. Tetrahedron: Asymmetry 2000, 11,
3693–3700.
References and notes
1
. Robertson, D. W.; Jones, N. D.; Swartzendruber, J. K.;
Yang, K. S.; Wong, D. T. J. Med. Chem. 1988, 31, 185–
29. Robertson, D. W.; Krushinski, J. H.; Fuller, R. W.;
Leander, J. D. J. Med. Chem. 1988, 31, 1412–1417.
30. Wong, D. T.; Fuler, R. W.; Robertson, D. W. Acta
Pharm. Nord. 1990, 2, 171–181.
31. Seco, J. M.; Quinoa, E.; Ruguera, R. Chem. Rev. 2004,
104, 17–117.
1
89.
. Ives, J. L.; Heym, J. Ann. Rep. Med. Chem. 1989, 24, 21–
9.
2
3
2
. Kamal, A.; Ramesh Khanna, G. B.; Ramu, R. Tetrahe-
dron: Asymmetry 2002, 13, 2039–2051.