Page 7 of 9
Pl eNa es we dJ oo u nr no at l ao df jCu hs et mm i as tr rgy ins
Journal Name
ARTICLE
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
3
Xingliang, L. Shiling and S. Xiaoxin, First Total Syntheses of 1-
DOI: 10.1039/D0NJ05235C
Benzoyl-3,4-dihydroisoquinoline Alkaloids Nelumstemine
and Longifolonine Based on the Photo-oxidation, Chinese J.
Org. Chem., 2020, 40, 1281; b) X. H. Duan and J. Q. Jiang, A
new benzylisoquinoline alkaloid from stems of Nelumbo
nucifera, Chinese Chem. Lett., 2008, 19, 308.
4
5
6
7
8
9
I. C. Bick, T. Sevenet, W. Sinchai, B. Skelton and A. White,
Alkaloids of Cryptocarya longifolia: X-Ray Crystal Structure of
Thalifoline and Longifolonine, Aus. J. Chem., 1981, 34, 195.
M. Leboeuf, A. Ranaivo, A. Cavé and H. Moskowitz, La
Velucryptine, Nouvel Alcaloïde Isoquinoléique Isolé de
Cryptocarya velutinosa, J. Nat. Prod., 1981, 52, 516.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
R. Tomar, A. Sahni, I. Chandra, V. Tomar and R. Chandra,
Review of Noscapine and its Analogues as Potential Anti-
Cancer Drugs, Mini-Rev. Org. Chem., 2018, 15, 345.
C. E. Puerto Galvis and V. V. Kouznetsov, Biomimetic Total
Synthesis of Dysoxylum Alkaloids, J. Org. Chem., 2019, 84
,
1
5294.
S. Ruchirawa, V. Bhavakul and M. Chaisupakitsin, A One-Pot
Synthesis of (±) Cryptostylines I, II, III, Synth. Commun., 2003,
33, 621.
A. Nash, X. Qi, P. Maity, K. Owens and U. K. Tambar,
Development of the Vinylogous Pictet-Spengler Cyclization
and Total Synthesis of (±)-Lundurine, A. Angew. Chem., 2018,
57, 6888.
1
0 A. B. J. Bracca, T. S. Kaufman, Synthesis of the Carbon
Framework of the Stephaoxocanes Employing a Sequential
RCM/Pomeranz-Fritsch Approach, Eur. J. Org. Chem., 2007,
Fig. 7. Energy framework diagrams for electrostatic (red) and
dispersion (green) contributions to the total interaction energies (blue)
in (A) 2a viewed along [100], and (B) 2d viewed along [010].
31, 5284.
1
1
1 L. Min, W. Yang, Y. Weng, W. Zheng, X. Wang and Y. Hu, A
Method for Bischler−Napieralski-Type Synthesis of 3,4-
Dihydroisoquinolines, Org. Lett., 2019, 21, 2574.
2 M. M. Heravi and N. Nazari, Bischler-Napieralski Reaction in
Total Synthesis of Isoquinoline-based Natural Products, An
Conflicts of interest
There are no conflicts to declare.
Old Reaction, a New Application. Curr. Org. Chem., 2015, 19
358.
,
2
Acknowledgements
The authors thank the Facultad de Ciencias and Departamento
de Química at Universidad de los Andes, Colombia, for their
support and X-ray diffraction facilities. M.A.M. thanks the
1
3 Y. Han, Z. Hu, M. Liu, M. Li, T. Wang and Y. Chen, Synthesis,
Characterization, and Properties of Diazapyrenes via
Bischler–Napieralski Reaction. J. Org. Chem., 2019, 84, 3953.
14 J. Párraga, A. Galán, M. J. Sanz, N. Cabedo, and D. Cortes,
Synthesis of hexahydrocyclopenta[ij]isoquinolines as a new
‘
Fondo de Apoyo para Profesores Asistentes’ of the Facultad
class of dopaminergic agents, Eur. J. Med. Chem., 2015, 90
01.
,
1
de Ciencias, Universidad de los Andes, Bogotá, FAPA-
P18.160422.043. CEPG acknowledges the fellowship given by
the doctoral program COLCIENCIAS-Conv. 617. VVK thanks to
the Colombian Institute for Science and Research,
COLCIENCIAS under project no. 007-2017, cod. 110274558597
for financial support.
1
5 C. E. Puerto Galvis, M. A. Macías and V. V. Kouznetsov,
Unexpected PF6 Anion Metathesis during the Bischler–
Napieralski Reaction: Synthesis of 3,4-Dihydroisoquinoline
Hexafluorophosphates and Their Tetrahydroisoquinoline
Related Alkaloids, Synthesis, 2019, 51, 1949.
6 Z. M. A. Judeh, C. B. Ching, J. Bu and A. McCluskey, The first
Bischler–Napieralski cyclization in a room temperature ionic
liquid, Tetrahedron Lett., 2002, 43, 5089.
17 D. Gupta, D. Bhatia, V. Dave, V. Sutariya and S. V. Gupta,
Salts of Therapeutic Agents: Chemical, Physicochemical, and
Biological Considerations, Molecules, 2018, 23, 1719.
8 A. N. ꢀim, A. Ngamnithiporn, ꢁ. ꢂ. ꢃelin, M. T. Daiger, C. ꢄ.
ꢅrꢆnanger, M. D. Bartberger, ꢇ. C. ꢈirgil and B. M. ꢇtoltꢉ,
Iridium-Catalyzed Enantioselective and Diastereoselective
Hydrogenation of 1,3-Disubstituted Isoquinolines, ACS Catal.,
1
Notes and references
1
a) R. D. Taylor, M. MacCoss and A. D. G. Lawson, G. Rings in
Drugs, J. Med. Chem., 2014, 57, 5845; b) E. Vitaku, D. T.
Smith and J. T. Njardarson, Analysis of the Structural
Diversity, Substitution Patterns, and Frequency of Nitrogen
Heterocycles among U.S. FDA Approved Pharmaceuticals, J.
Med. Chem., 2014, 57, 10257; c) S. D. Roughley and A. M.
Jordan, The Medicinal Chemist’s Toolbox: An Analysis of
Reactions Used in the Pursuit of Drug Candidates, J. Med.
Chem., 2011, 54, 3451.
a) I. P. Singh and P. Shah, Tetrahydroisoquinolines in
therapeutics: a patent review (2010-2015), Expert Opin.
Ther. Pat., 2017, 27, 17; b) J. D. Scott and R. M. Williams,
Chemistry and Biology of the Tetrahydroisoquinoline
Antitumor Antibiotics, Chem. Rev., 2002, 102, 1669.
1
2
020, 10, 3241.
1
2
9 G. M. Sheldrick, Crystal structure refinement with SHELXL,
Acta Crystallogr. Sect. C: Struct. Chem., 2015, 71, 3.
0 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P.
McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de
Streek and P. A. Wood, Mercury CSD 2.0 - new features for
the visualization and investigation of crystal structures, J.
Appl. Crystallogr, 2008, 41, 466.
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins