Scheme 3a
a
Reagents and conditions: (a) NaBH
MoOPH, THF, -78 °C, 50%; (d) Ac
DMAP, CH Cl
4
, EtOH, -30 °C, 83%; (b) MOMCl, i-Pr
2
NEt, CH
, room temperature, 84%; (e) H
2
Cl
, Pd/C (10%), EtOH, 30 °C, then Ac
O, Py, DMAP, CH Cl , room temperature, 73%.
2
, 0 °C f room temperature, 90% (c) LDA,
2
O, Py, DMAP, CH
2
Cl
2
2
2
O, Et
3
N,
2
2
, room temperature, 68%; (f) p-TsOH, EtOH, reflux, then Ac
2
2
2
However, the following removal of the tosyl group in 14
using either Na/NH or Na/naphthalene suffered from very
low yield (<10%), although the expected product 15 did
form. This difficulty made us reconsider introducing an azide
group at C-5 first.
in 90% yield. Reduction of the ketone of 15 with NaBH
4
at
3
-30 °C afforded the desired anti product 19 in 85% yield.
All the protecting groups in compound 19 were then removed
by treatment with p-TsOH in refluxing EtOH. Acetylation
of the unmasked hydroxyl groups to afford the corresponding
2
1
Oxidative azidation (CAN/NaN
3
) of silyl enol ether is also
acetate 20 was fulfilled (96%) using acetic anhydride in
the presence of Et N and a catalytic amount of DMAP.
an established means to prepare R-azido ketone. Although
there are reports1 on the ineffectiveness of this reaction,
we found that the yield could be significantly improved by
3
8,19
The 4-epi analogue 24 was also prepared according to
Scheme 2. Reduction of the ketone carbonyl in 17 with the
2
2
modifying the procedure. Thus, treatment of 9 with NaN
3.0 equiv) in anhydrous CH CN at -25 °C followed by
slow addition of CAN (2.5 equiv in CH CN) led to the
3
3 3 3
bulky reducing reagent LiAl[O(CH ) ] H at -10 °C gave
(
3
syn product 21 in 80% isolated yield. After protection of
the C-4 hydroxyl as the MOM ether (22, 91% yield), the
azido functionality was hydrogenated to give an amine, which
was converted to 23 in high yield (95%). Then, under the
same conditions, compound 23 was transformed into 24, the
fully acetylated 4-epi-2-deoxy-â-Neu5Ac, in 92% yield.23
The total synthesis of sialic acid from intermediate 17
require oxidation at C-2. Thus, reduction of the ketone,
3
desired product 17 in a 61% isolated yield, together with a
small amount of 18 (10%). It is noteworthy that unlike all
the previously reported procedures, the present one can be
run easily on larger scales (1.5-2.5 g) without lowering the
yield.
Conversion of 17 to the corresponding acetamide 15 using
20
a modification of Rosen’s method (Scheme 2) was realized
(
14) (a) Phukan, P.; Sudalai, A. Tetrahedron: Asymmetry 1998, 9, 1001-
1
005. (b) Bruncko, M.; Schlingloff, G.; Sharpless, K. B. Angew. Chem.,
(
6) Enzyme synthesis of Neu5Ac and related compounds: (a) Bednarski,
Int. Ed. Engl. 1997, 36, 1483-1486.
M. D.; Chenault, H. K.; Simon, E. S.; Whitesides, G. M. J. Am. Chem.
Soc. 1987, 109, 1283-1285. (b) Auge, C.; David, S.; Gautheron, C.
Tetrahedron Lett. 1984, 25, 4663-4664. (c) Auge, C.; David, S.; Gautheron,
C.; Veyri e` res, A. Tetrahedron Lett. 1985, 26, 2439-2440. (d) Kim, M.-J.;
Hennen, W. J.; Sweers, H. M.; Wong, C.-H. J. Am. Chem. Soc. 1988, 110,
(15) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc.
1994, 116, 2742-2753.
(16) The catalyst was prepared from Cu2O according to the reported
procedure: Kubas, G. J. Inorg. Synth. 1979, 19, 90-92.
(17) The I-N ylide was prepared by following the reported procedure:
Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975, 361-362.
(18) Auberson, Y.; Vogel, P. Tetrahedron 1990, 46, 7019-7032.
(19) Magnus, P.; Barth, L. Tetrahedron Lett. 1992, 33, 2777-2780.
(20) Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53,
1580-1582.
6
481-6486. (e) Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic
Organic Chemistry, Tetrahedron Organic Chemistry Series Volume 12;
Pergamon: Oxford, 1994. (f) Sugai, T.; Kuboki, A.; Hiramatsu, S.; Okazaki,
H.; Ohta, H. Bull. Chem. Soc. Jpn. 1995, 68, 3581.
(7) Chemical synthesis of 2-deoxy-2H derivatives of Neu5Ac: (a)
Gervay, J.; Gregar, T. Tetrahedron Lett. 1997, 38, 5921-5924. (b) Bandgar,
B. P.; Zbiral, E. Carbohydr. Res. 1995, 270, 201-210. (c) Wallimann, K.;
Vasella, A. HelV. Chim. Acta 1990, 73, 1359-1372. (d) Bandgar, B. P.;
Hartmann, M.; Schmid, W.; Zbiral, E. Liebigs Ann. Chem. 1990, 1185-
(21) NMR data for compound 20: 1H NMR (300 MHz, CDCl3) δ 5.59
(1H, d, J ) 8.5 Hz, NH), 5.42 (1H, ddd, J ) 7.1, 5.1, 1.2 Hz), 5.25 (1H,
dd, J ) 4.7, 1.6 Hz), 5.11 (1H, ddd, J ) 5.1, dt, J ) 11.5, 4.9 Hz), 4.60
(1H, dd, J ) 12.1, 2.2 Hz), 4.29 (1H, dd, J ) 12.3, 6.9 Hz), 4.22 (2H, dq,
J ) 7.1, 1.3 Hz), 4.05 (1H, dd, J ) 12.1, 2.2 Hz), 3.95 (1H, q, J ) 10.2
Hz), 3.67 (1H, J ) 10.6, 1.4 Hz), 2.39 (1H, ddd, J ) 12.6, 4.9, 2.2 Hz),
2.11, 2.10, 2.06, 2.05, 1.98 (15H, 5s), 1.76 (1H, q, J ) 12.1 Hz), 1.28 (3H,
1
3
195. (e) Schmid, W.; Christian, R.; Zbiral, E. Tetrahedron Lett. 1988, 29,
643-3646.
(8) (a) Hu, Y.-J.; Huang, X.-D.; Yao, Z.-J.; Wu, Y.-L. J. Org. Chem.
13
1
998, 63, 2456-2461. (b) Li, L.-Sh.; Wu, Y.-K.; Hu, Y.-J.; Wu, Y.-L.
t, J ) 7.1 Hz); C NMR (75 MHz, CDCl3) δ 170.81, 170.64, 170.31,
170.25, 170.08, 168.71, 78.70, 74.12, 71.40, 70.82, 69.85, 62.73, 61.50,
51.84, 33.78, 23.24, 21.01, 20.94, 20.91, 20.72, 14.00; EIMS (m/z) 490
Tetrahedron: Asymmetry 1998, 9, 2271-2277. (c) Hu, Y.-J.; Huang, X.-
D.; Wu, Y.-L. J. Carbohydr. Chem. 1998, 17, 1095. (d) Li, L.-Sh.; Wu,
Y.-K.; Wu, Y.-L. J. Carbohydr. Chem. 1999, 18, 1067-1077.
+
(M + 1); [R]D ) 34.2 (c 0.25, CHCl3).
(
9) Barker, R.; MacDonnald, D. L. J. Am. Chem. Soc. 1960, 82, 2301-
(22) Boireau, G.; Deberly, A.; Toneva, R. Synlett 1993, 585-587.
(23) NMR data for compound 24: 1H NMR (600 MHz, CDCl3) δ 5.82
(1H, d, J ) 9.0 Hz, NH), 5.43 (1H, dt, J ) 9.0, 2.4 Hz), 5.26 (1H, dd, J
) 6.6, 3.0 Hz), 5.10 (1H, m), 4.47 (1H, dd, J ) 12.6, 2.4 Hz), 4.43 (1H,
dd, J ) 6.6, 2.4 Hz), 4.28-4.22 (3H, m), 4.12 (1H, t, J ) 7.2 Hz), 4.14-
4.11 (1H, m), 2.52 (1H, ddd, J ) 15.0, 4.2, 2.4 Hz), 2.17, 2.12, 2.05, 2.04,
2.01 (15H, 5s), 2.09 (1H, ddd, J ) 15.0, 7.2, 3.0 Hz), 1.26 (3H, t, J ) 7.1
Hz); 13C NMR (150 MHz, CDCl3) δ 171.08, 171.05, 170.62, 170.38, 170.23,
169.42, 70.83, 70.65, 69.37, 68.78, 62.38, 61.19, 60.35, 47.24, 30.08, 23.19,
2
303.
10) For discussion about the mechanism of related reactions catalyzed
(
by other salen metal complex catalysts, see: Schaus, S. E.; Brnalt, J.;
Jacobsen, E. N. J. Org. Chem. 1998, 63, 403.
(
11) (a) Hashiyama, T.; Morikawa, K.; Sharpless, K. B. J. Org. Chem.
992, 57, 5067-5068. (b) Morikawa, K.; Park, J.; Andersson, P. G.;
Hashiyama, T.; Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 8463-8064.
12) Neufellner, E.; Kapeller, H.; Griengl, H. Tetrahedron 1998, 54,
1043-11062.
13) Mitsunobu, O. Synthesis 1981, 1-28.
1
(
+
1
20.96, 20.91, 20.75, 20.69, 13.69; EIMS (m/z) 490 (M + 1); [R]D ) 98.6
(c 1.09, CHCl3).
(
Org. Lett., Vol. 2, No. 7, 2000
893