was found to be: rate = k2[RuVI][PhCH2OH], with the second-
order rate constant of (3.6 ± 0.1) 3 1021 dm3 mol21 s21 at 298
K. It is noteworthy that a large primary kinetic isotope effect
was observed using PhCD2OH (kH/ kD = 7.4) indicating that the
reaction should proceed via a hydrogen atom abstraction
pathway.
C(50)
C(48)
C(49)
C(47)
C(51)
C(23)
O(1)
C(22)
C(45)
C(46)
C(24)
C(25)
S
C(21)
N(5)
O(2)
C(2)
C(3)
C(5)
C(7)
We acknowledge support from The University of Hong Kong
and the Hong Kong Research Grants Council.
C(31)
C(32)
C(41)
C(40)
C(8)
C(6)
C(26)
C(4)
C(9)
C(39)
C(20)
N(1)
N(2)
C(1)
C(42)
C(30)
C(29)
N(4)
C(11)
Footnotes and References
N(3)
Ru
C(10)
C(27)
C(19)
C(16)
* E-mail: cmche@hkucc.hku.hk
† For correspondence regarding the crystallography.
C(34)
C(14)
N(6)
C(15)
C(44)
C(43)
C(18)
C(28)
C(12)
C(13)
C(17)
C(35)
‡ Satisfactory elemental analyses were obtained for all compounds. UV–
VIS [lmax/nm (log emax/dm3mol21cm21)] (CH2Cl2): 1 416 (5.14), 536
(4.18), 568 (3.77); 2 406 (5.07), 520 (4.21), 551 (4.16); 3 412 (5.07), 530
(3.96). 1H NMR (300 MHz, TMS, CD2Cl2): 1 dH 2.17(s, Me, 6H), 4.87(d,
4H), 6.45(d, 4H), 7.79(m, 12H), 8.18(m, 8H), 8.82(s, 8H); 2 dH 1.99(t,
24H), 2.29(s, 6H), 4.07(q, 16H), 4.63(d, 4H), 6.48(d, 4H), 10.0(s, 4H). IR
C(33)
C(52)
C(53)
N(7)
C(36)
C(38)
C(54)
C(37)
Fig. 2 A perspective view of 3 with atom labelling scheme. Selected bond
distances (Å) and angles (°): Ru–N(5) 2.025(11), Ru–N(6) 2.111(11), Ru–
N(1) 2.041(8), Ru–N(2) 2.032(9), Ru–N(3) 2.033(8), Ru–N(4) 2.037(9);
N(5)–Ru–N(6) 176.2(4), Ru–N(5)–S 136.4(7).
(Nujol) 1 914, 1016 cm21; 2 900, 1018 cm21; 3 1012 cm21
§ Crystal data for 3: C54H39N7O2RuS, M = 951.09, monoclinic, space
group P21/c, a 13.308(2), b 14.473(5), c 25.678(6) Å, b
.
=
=
=
= 90.05(2)°, U = 4945.7(22) Å3, Z = 4, Dc = 1.277 g cm23, m = 33.162
cm21, F(000) = 1952, crystal dimensions 0.03 3 0.10 3 0.50 mm.
Intensity data were collected at 298 K on a Enraf-Nonius CAD4
diffractometer with graphite-monochromated Mo-Ka radiation (l = 1.5418
Å). A total of 7540 unique reflections were measured and 4438 with
I > 2s(I) were used as refinement; R = 0.061, Rw = 0.087, GOF = 1.43.
The final Fourier difference map showed residual extrema in the range 1.36
to 20.650 e Å23. CCDC 182/535.
structure of 3 has been established by X-ray crystal analysis.‡
As shown in Fig. 2, the Ru–N(5) bond distance of 2.025(11) Å
is comparable to the RuIV–N(amide) distances of
1.987–2.044(5)
Å
found in [RuIV(chbae)(PPh3)(py)]
[chbae = 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane
tetraanion].14 The Ru–N(5)–S(1) bond angle of 136.4(7)° is not
unexpected for a coordinated amide ligand since a similar value
of 138.4(6)° has been reported for [RuII(Et2dtc)(PPh3)2-
(CO)(NHSO2C6H2Pri3-2,4,6)] (Et2dtc = N,N’-diethyldithio-
carbamate).15
1 D. A. Evans, M. M. Faul and M. T. Bilodeau, J. Am. Chem. Soc., 1994,
116, 2742.
2 J. P. Mahy, G. Bedi, P. Battioni and D. Mansuy, J. Chem. Soc., Perkin
Trans. 2, 1988, 1517.
3 R. Breslow and S. H. Gellman, J. Chem. Soc., Chem. Commun., 1982,
1400.
The UV–VIS spectral trace for the reaction of 1 with excess
styrene in CH2Cl2 containing pyrazole (2% m/m) exhibited
clean isosbestic points [Fig. 1(b)]. The reactions of 1 with
alkenes followed the second-order rate law, rate = k2[RuVI]-
[alkene]. The second-order rate constants k2 measured at 298 K
are (9.7 ± 0.3) 3 1023 and (1.1 ± 0.1) 3 1023 dm3 mol21 s21for
styrene and norbornene, respectively. The activation parameters
for the styrene aziridination by 1 were determined to be
DH‡ = 4.7 ± 0.1 kcal mol21 and DS‡ = 252.4 ± 0.2 cal K21
mol21 (1 cal = 4.184J). The negative value of DS‡ is consistent
with an associative mechanism. For the aziridination of various
para-substituted styrenes (p-OMe, -Me, -F, -Cl, -CF3) by 1, the
k2 values were found to span a narrow range. The log krel
[krel = k2(p-substituted styrene)/k2(styrene)] values correlate
linearly with the s+ values with a small magnitude of r+ = 21.1
(R = 0.98); this indicates a minor development of positive
charge in the transition state.
4 J. S. Huang, C. M. Che and C. K. Poon, J. Chem. Soc., Chem. Commun.,
1992, 161.
5 A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B.
Hursthouse, Polyhedron, 1992, 11, 2961.
6 A. K. Burrell and A. J. Steedman, J. Chem. Soc., Chem. Commun., 1995,
2109.
7 J. T. Groves and T. Takahashi, J. Am. Chem. Soc., 1983, 105, 2073.
8 R. C. Young, J. K. Nagle, T. J. Meyer and P. G. Whitten, J. Am. Chem.
Soc., 1978, 100, 4473.
9 Y. Yamada, T. Yamamoto and M. Okawara, Chem. Lett., 1975, 361.
10 (a) W. H. Leung and C. M. Che, J. Am. Chem. Soc., 1989, 111, 8812; (b)
C. Ho, W. H. Leung and C. M. Che, J. Chem. Soc., Dalton Trans., 1991,
2933.
11 J. T. Groves and K. H. Ahn, Inorg. Chem., 1987, 26, 3831.
12 J. A. Smieja, K. M. Omberg and G. L. Breneman, Inorg. Chem.,1994,
33, 614.
13 J. S. Huang, C. M. Che, Z. Y. Li and C. K. Poon, Inorg. Chem.,1992, 31,
1315.
14 C. M. Che, W. K. Cheng, W. H. Leung and T. C. W. Mak, J. Chem. Soc.,
Chem. Commun., 1987, 418.
Stoichiometric oxidation of benzyl alcohol by 1 in dichloro-
methane containing pyrazole (2% m/m) gave benzaldehyde and
tosyl amine quantitatively (Table 1), and 3 was formed as the
product of the reduction of the imidoruthenium(vi) complex.
The observed rate law for the reaction of benzyl alcohol with 1
15 W. H. Leung, M. C. Wu, J. L. C. Chim and W. T. Wong, Inorg. Chem.,
1996, 35, 4801.
Received in Cambridge, UK, 26th March 1997, 7/02093G
1656
Chem. Commun., 1997