Communication
ChemComm
3 Y. Zhao, L. Du, H. Li, W. Xie and J. Chen, J. Phys. Chem. Lett., 2019,
10, 1286–1291.
4 S. Shabbir, S. Lee, M. Lim, H. Lee, H. Ko, Y. Lee and H. Rhee,
J. Organomet. Chem., 2017, 846, 296–304.
5 S. Santoro, S. I. Kozhushkov, L. Ackermann and L. Vaccaro, Green
Chem., 2016, 18, 3471–3493.
6 A. J. Reay and L. J. S. Fairlamb, Chem. Commun., 2015, 51,
16289–16307.
7 L. Djakovitch and F.-X. Felpin, ChemCatChem, 2014, 6, 2175–2187.
´
8 D. Pla and M. Gomez, ACS Catal., 2016, 6, 3537–3552.
9 L. J. S. Fairlamb, A. R. Kapdi, A. F. Lee, G. Sanchez, G. Lopez,
J. L. Serrano, L. Garcia, J. Perez and E. Perez, Dalton Trans., 2004,
3970–3981.
10 A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers,
H. J. W. Henderckx and J. G. de Vries, Org. Lett., 2003, 5, 3285–3288.
11 C. Deraedt and D. Astruc, Acc. Chem. Res., 2014, 47, 494–503.
12 M. T. Reetz and J. G. de Vries, Chem. Commun., 2004, 1559–1563.
13 J. G. de Vries, Dalton Trans., 2006, 421–429.
14 T. E. Storr, C. G. Baumann, R. J. Thatcher, S. D. Ornellas,
A. C. Whitwood and L. J. S. Fairlamb, J. Org. Chem., 2009, 74,
5810–5821.
´
´
15 K. D. Collins, R. Honeker, S. Vasquez-Cespedes, D.-T. D. Tang and
F. Glorius, Chem. Sci., 2015, 6, 1816–1824.
16 D.-T. D. Tang, K. D. Collins, J. B. Ernst and F. Glorius, Angew. Chem.,
Int. Ed., 2014, 53, 1809–1813.
17 D.-T. D. Tang, K. D. Collins and F. Glorius, J. Am. Chem. Soc., 2013,
135, 7450–7453.
18 R. Ye, A. V. Zhukhovitskiy, C. V. Deraedt, F. D. Toste and
G. A. Somorjai, Acc. Chem. Res., 2017, 50, 1894–1901.
19 C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste and G. A. Somorjai,
J. Am. Chem. Soc., 2017, 139, 18084–18092.
Fig. 3 (a) Reaction scheme and (b) XPS spectra at the Pd 3d level of (A)
oxidized Pd NPs after the treatment with [Ph2I]BF4 and (B) after C–H
arylation in air. (c) Proposed catalytic cycle.
20 A. J. Brown, D. Pinkowicz, M. R. Saber and K. R. Dunbar, Angew.
Chem., Int. Ed., 2015, 52, 5864–5868.
21 Y. Li, J. H.-C. Liu, C. A. Witham, W. Huang, M. A. Marcus,
S. C. Fakra, P. Alayoglu, Z. Zhu, C. M. Thompson, A. Arjun, K. Lee,
E. Gross, F. D. Toste and G. A. Somorjai, J. Am. Chem. Soc., 2011, 133,
13527–13533.
22 K. Kim, Y. Jung, S. Lee, M. Kim, D. Shin, H. Byun, S. J. Cho, H. Song
and H. Kim, Angew. Chem., Int. Ed., 2017, 56, 6952–6956.
23 M. Kim, S. Lee, K. Kim, D. Shin, H. Kim and H. Song, Chem.
Commun., 2014, 50, 14938–14941.
homogeneous substrates would offer synergistic characteristics
merging the advantages of both systems, such as enhanced
catalytic performances with separation and recycle abilities.
This work was supported by Saudi Aramco-KAIST CO2 manage-
ment center. The authors thank for the support by the National
Research Foundation of Korea (NRF) funded by the Korea Govern-
ment (MSIT) (2018R1A2B3004096, 2018R1A5A1025208, and 2020
R1A2C2013420). SJC thanks the Global Frontier Center for Hybrid
Interface Materials (GFHIM, grant no. NRF-2015M3A6B106526633).
The authors acknowledge the Pohang Accelerator Laboratory (PAL)
for beamline use. EXAFS experiments at PLS were supported by
MSIP and POSTECH.
24 M. Kim, J. C. Park, A. Kim, K. H. Park and H. Song, Langmuir, 2012,
28, 6441–6447.
25 B. D. Hall, D. Zanchet and D. Ugarte, J. Appl. Crystallogr., 2000, 33,
1335–1341.
26 V. Arun, P. O. V. Reddy, M. Pilania and D. Kumar, Eur. J. Org. Chem.,
2016, 2096–2100.
27 R. H. Crabtree, Chem. Rev., 2012, 112, 1536–1554.
28 X. Fan, F. Wang, T. Zhu and H. He, J. Environ. Sci., 2012, 24(3),
507–511.
29 L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii and
A. I. Boronin, J. Phys. Chem. C, 2012, 116, 19342–19348.
30 M. Margoshes and V. A. Fassel, Spectrochim. Acta, 1955, 7, 14–24.
31 K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura,
R. Kumashiro and N. P. Lalla, Chem. Mater., 2002, 14, 2120–2128.
32 P. L. Alsters, J. Boersma, W. J. J. Smeets, A. L. Spek and G. van Koten,
Organometallics, 1993, 12, 1639–1647.
Conflicts of interest
The authors declare no conflict of interest.
Notes and references
33 J. M. Keith, W. A. Goddard and J. Oxgaard, J. Am. Chem. Soc., 2007,
129, 10361–10369.
34 Rearrangement of Pd(II)–Ph species could provide Ph–Pd(II)–Ph
species, resulting in Pd(0) and biphenyl.
1 A. Biffis, P. Centomo, A. D. Zotto and M. Zecca, Chem. Rev., 2018,
118, 2249–2295.
2 L. X. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133–173.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020