4
have first been developed. Due to the low loading capacity
They, furthermore, represent a model substrate for the study
of selective activation of C-H bonds in the presence of
halogen-carbon bonds via lithiation chemistry. This regio-
and chemoselective lithiation step constitutes the key step
of these polymers, hyperbranched polymers and dendrimers
appear to be more suitable supports.5
In relation to our interest in applications of functionalized
dendrimers as homogeneous catalysts, we recently showed
6
12
of substrate attachment to the dendritic support. As a test
that soluble carbosilane (CS) dendrimers are suitable supports
to allow classical organic reactions at their periphery.
substrate, a substituted pyridine, such as 3-bromopyridine
1, was chosen in which the presence of the 3-Br-C bond
allowed the introduction of an organic fragment on the
supported pyridine; see Scheme 1.
7
Among the variety of dendritic backbones, CS dendrimers
present several advantages such as high thermal stability,
high inertness toward organic reagents, good accessibility,
good solubility in classical organic solvents, and a size that
8
Scheme 1a
makes these supports separable via nanofiltration.
To further explore the scope and the multipurpose aspects
of this type of support, we present here the multistep
modification of pyridine derivatives via palladium-catalyzed
coupling reactions at the periphery of a soluble carbosilane
dendritic support. We have used a simple process based on
1
a
three key steps, including (1) attachment of the organic
fragment to the support, without linker, via a covalent bond;
(
(
2) modification of this fragment by coupling reactions; and
3) release of the target molecule from the support by a
simple and clean procedure. To complete the overall
methodology, the effective nanosize of the dendritic scaf-
folding allows the facile purification of the synthesized,
supported intermediates by means of dialysis.
Pyridine structures have been selected because these are
known to belong to numerous natural product skeletons and
9
pharmacophores, such as (-)-nicotine derivatives. Substi-
tuted pyridines are also used as ligands in organometallic
a
(a) LDA/THF/-100 °C; (b) TMSCl; (c) Pd(PPh ) (1 mol %),
3
4
and coordination chemistry,10 and for the study of cross-
6 4 2 2 3
p-MeC H B(OH) , Na CO (2 M), toluene/EtOH (5/1), 100 °C, 16
h; (d) Pd(OAc) (2.5 mol %), PPh (5 mol %), ethyl acrylate, Et N,
DMF, 130 °C, 16 h; (e) PdCl
1
1
coupling reactions in classical solution-phase chemistry.
2
3
3
2
(PPh
)
3 2
(5 mol %), PPh
3
(10 mol
%
), CuI (10 mol %), phenylacetylene, Et
3
N, THF, 70 °C, 16 h; (f)
(
3) Wentworth, P., Jr.; Vandersteen, A. M.; Janda, K. D. Chem. Commun.
997, 759-760.
4) (a) Geckeler, K.; Pillai, V. N. R.; Mutter, M. AdV. Polym. Sci. 1981,
9, 65-94. (b) van de Kuil, L. A.; Grove, D. M.; Zwikker, J. W.;
n-Bu NF, THF, rt, 16 h.
4
1
(
3
Jenneskens, W.; Drenth, W.; van Koten, G. Chem. Mater. 1994, 6, 1676-
683. (c) Gravert, D. J.; Janda, K. D. Chem. ReV. 1997, 97, 489-509.
5) (a) Tomalia, D. A. Aldrichimica Acta 2004, 37 (2), 39-57. (b)
As a simplified model system, a trimethylsilyl (TMS)
group was used as a mimic of the dendritic support. Selective
additions of electrophiles via lithiation of bromopyridines
are well-known, and controlled ortho- and para-lithiation of
1
(
Dendrimers and Other Dendritic Polymers; Tomalia, D. A., Fr e´ chet, J. M.
J., Eds.; J. Wiley & sons Ltd.: West Sussex, 2001. (c) Fr e´ chet, J. M. J.
Science 1994, 263, 1710-1714. (d) Kim, R. M.; Manna, M.; Hutchins, S.
M.; Griffin, P. R.; Yates, N. A.; Bernick, A. M.; Chapman, K. T. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 10012-10017. (e) Klein Gebbink, R. J.
M.; Kruithof, C. A.; van Klink, G. P. M.; van Koten, G. ReV. Mol.
Biotechnol. 2002, 90, 183-193.
12b,12c
3-bromopyridine has been reported.
Para-lithiation using
LDA at low temperature (-100 °C) in tetrahydrofuran and
subsequent quenching with TMSCl afforded the correspond-
ing 3-bromo-4-trimethylsilylpyridine 2 in 53% yield, based
on the pyridine starting material. Because the TMS group is
used as a mimic of the dendritic support it should in
consequence be considered as the determining factor of the
reaction. Thus, an excess of the lithiated pyridine (2 equiv)
was employed which improved the yield to 91%, based on
the starting TMSCl.
(6) (a) Hovestad, N. J.; Eggeling, E. B.; Heidb u¨ chel, H. J.; Jastrzebski,
J. T. B. H.; Kragl, U.; Kleim, W.; Vogt, D.; van Koten, G. Angew. Chem.,
Int. Ed. 1999, 38, 1655-1658. (b) Knapen, J. W. J.; van der Made, A. W.;
de Wilde, J. C.; van Leeuwen, P. W. N. W.; Wijkens, P.; Grove, D. M.;
van Koten, G. Nature 1994, 372, 659-663. (c) Kleij, A. W.; Gossage, R.
A.; Klein Gebbink, R. J. M.; Brinkmann, N.; Reijerse, E. J.; Kragl, U.;
Lutz, M.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 2000, 122, 12112-
1
2124.
7) (a) Wijkens, P.; Jastrzebski, J. T. B. H.; van der Schaaf, P. A.; Kolly,
(
R.; Hafner, A.; van Koten, G. Org. Lett. 2000, 2, 1621-1624. (b) Hovestad,
N. J.; Ford, A.; Jastrzebski, J. T. B. H.; van Koten, G. J. Org. Chem. 2000,
6
5, 6338-6344. (c) Hovestad, N. J.; Jastrzebski, J. T. B. H.; van Koten, G.
Polym. Mater. Sci. Eng. 1999, 80, 53-54.
8) (a) Mulder, M. Basic Principles of Membrane Technology; Kluwer:
(10) (a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.;
von Zelewsky, A. Coord. Chem. ReV. 1988, 84, 85-277. (b) Kaes, C.;
Katz, M.; Hosseini, M. W. Chem. ReV. 2000, 100, 3553-3590.
(11) (a) Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201-
2208. (b) Unrau, C. M.; Campbell, M. G.; Snieckus, V. Tetrahedron Lett.
1992, 33, 2773-2276. (c) Bouillon, A.; Lancelot, J.-C.; Collot, V.; Bovy,
P. R.; Rault, S. Tetrahedron 2002, 58, 2885-2890.
(12) (a) Gribble, G. W.; Saulnier, M. G. Tetrahedron Lett. 1980, 21,
4137-4140. (b) Gribble, G. W.; Saulnier, M. G. Heterocycles 1993, 35,
151-169. (c) Comins, D. L.; Myoung, Y. C. J. Org. Chem. 1990, 55, 292-
298. (d) Choppin, S.; Gros, P.; Fort, Y. Eur. J. Org. Chem. 2001, 603-
606. (e) Gros, P.; Fort, Y. Eur. J. Org. Chem. 2002, 3375-3383.
(
Dordrecht, The Netherlands, 1996. (b) Dijkstra, H. P.; van Klink, G. P.
M.; van Koten, G. Acc. Chem. Res. 2002, 35, 798-810. (c) Haag, R. Chem.
Eur. J. 2001, 7, 327-335. (d) Vankelecom, I. F. J. Chem. ReV. 2002, 102,
3
779-3810.
(9) (a) Swango, J. H.; Quershi, M. M.; Crooks, P. A. Pharm. Res. 1997,
1
4, 695-699. (b) Baxendale, I. R.; Brusoti, G.; Matsuoka, M.; Ley, S. V.
J. Chem. Soc., Perkin Trans. 1 2002, 143-154. (c) Felpin, F.; Girard, S.;
Vo-Thang, G.; Robins, R. J.; Villieras, J.; Lebreton, J. J. Org. Chem. 2001,
6
6, 6305-6312.
364
Org. Lett., Vol. 7, No. 3, 2005