European Journal of Organic Chemistry
10.1002/ejoc.201601096
COMMUNICATION
To get mechanistic insight, parallel reactions of 1a and
deuterio-1a with 2a under standard reaction conditions were
performed, which provided the kinetic isotope effect of 1.07
ketazines. Further transformation of amidated azobenzenes led
to facile access to benzimidazole and benzotriazole derivatives.
(
Scheme 7), thus suggesting that C−H bond cleavage might be
[
13]
not involved in the rate-determining step.
Acknowledgements
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP)
(
Nos. 2016R1A4A1011189 and 2015R1A2A1A15053033).
Keywords: amidation • azobenzenes • C–H functionalization •
dioxazolones • rhodium
[
1]
2]
For recent reviews of C−H functionalization, see: a) N. Kuhl, N.
Schröder, F. Glorius, Adv. Synth. Catal. 2014, 356, 1443–1460; b) Z.
Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front.
Scheme 7. Kinetic Isotope Effect Experiment.
2015, 2, 1107–1295; c) G. Song, X. Li, Acc. Chem. Res. 2015, 48,
3
Based on KIE experimental data and previous literatures, a
proposed reaction pathway is outlined in Scheme 8. In the
1007–1020; d) L. Yang, H. Huang, Chem. Rev. 2015, 115, 3468–3517;
e) S. Sharma, N. K. Mishra, Y. Shin, I. S. Kim, Curr. Org. Chem. 2016,
2
0, 471–511.
a) K.-H. Ng, A. S. C. Chan, W.-Y. Yu, J. Am. Chem. Soc. 2010, 132,
2862–12864; b) K. Sun, Y. Li, T. Xiong, J. Zhang, Q. Zhang, J. Am.
presence of AgNTf
2
, a cationic [Cp*Rh(III)] complex is generated
[
in situ as an active catalyst, which coordinates to azobenzene
1
(
1a) and further undergoes C–H activation to afford rhodacyclic
Chem. Soc. 2011, 133, 1694–1697; c) X. Chen, X.-S. Hao, C. E.
Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 6790–6791; d) T.
Kawano, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2010, 132,
6900–6901; e) E. J. Yoo, S. Ma, T.-S. Mei, K. S. L. Chan, J.-Q. Yu, J.
Am. Chem. Soc. 2011, 133, 7652–7655; f) J. Y. Kim, S. H. Park, J. Ryu,
S. H. Cho, S. H. Kim, S. Chang, J. Am. Chem. Soc. 2012, 134, 9110–
[
14]
intermediate I.
Coordination of 2a and migratory insertion
delivers a six-membered Rh(III)-amido species III with release of
CO . Finally, protonation can take place to furnish our desired
2
product 3a, and the active Rh(III) species can recycle in the
catalytic system.
9113; g) J. Ryu, K. Shin, S. H. Park, J. Y. Kim, S. Chang, Angew.
Chem. Int. Ed. 2012, 51, 9904–9908; Angew. Chem. 2012, 124,
10042–10042; h) K. Shin, Y. Baek, S. Chang, Angew. Chem. Int. Ed.
2013, 52, 8031–8036; Angew. Chem. 2013, 125, 8189–8194.
[
3]
a) Y. Park, K. T. Park, J. G. Kim, S. Chang, J. Am. Chem. Soc. 2015,
137, 4534–4542; b) J. Park, S. Chang, Angew. Chem. Int. Ed. 2015, 54,
14103–14107; Angew. Chem. 2015, 127, 14309–14313; c) Y. Park, S.
Jee, J. G. Kim, S. Chang, Org. Process Res. Dev. 2015, 19, 1024–
1
029; d) H. Wang, G. Tang, X. Li, Angew. Chem. Int. Ed. 2015, 54,
3049–13052; Angew. Chem. 2015, 127, 13241–13244; e) Y. Liang,
1
Y.-F. Liang, C. Tang, Y. Yuan, N. Jiao, Chem. Eur. J. 2015, 21, 16395–
1
6399; f) X. Wang, A. Lerchen, F. Glorius, Org. Lett. 2016, 18, 2090–
093; g) R. Mei, J. Loup, L. Ackermann, ACS Catal. 2016, 6, 793–797;
2
h) H. Wang, M. M. Lorion, L. Ackermann, Angew. Chem. Int. Ed. 2016,
5, 10386–10390; Angew. Chem. 2016, 128, 10542–10546; i) F. Wang,
5
H. Wang, Q. Wang, S. Yu, X. Li, Org. Lett. 2016, 18, 1306–1309; j) J.
Wang, S. Zha, K. Chen, F. Zhang, C. Song, J. Zhu, Org. Lett. 2016, 18,
2062–2065; k) N. Barsu, M. A. Rahman, M. Sen, B. Sundararaju, Chem.
Eur. J. 2016, 22, 9135–9138.
[
[
4]
5]
a) K. Hunger in Industrial Dyes: Chemistry, Properties, Applications,
Wiley-VCH, Weinheim, Germany, 2003; b) A. Bafana, S. S. Devi, T.
Chakrabarti, Environ. Rev. 2011, 19, 350–371.
a) V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì,
M. Mayor, M. A. Rampi, Angew. Chem. Int. Ed. 2008, 47, 3407–3409;
Angew. Chem. 2008, 120, 3455–3457; b) T. Muraoka, K. Kinbara, T.
Aida, Nature 2006, 440, 512–515; c) F. Puntoriero, P. Ceroni, V.
Balzani, G. Bergamini, F. Vögtle, J. Am. Chem. Soc. 2007, 129, 10714–
Scheme 8. Proposed Reaction Mechanism.
10719.
[
6]
a) D. L. Fahey, Chem. Commun. 1970, 417; b) D. R. Fahey, J.
Organomet. Chem. 1971, 27, 283–292.
In conclusion, we have disclosed the rhodium(III)-catalyzed
C–H amidation reaction of azobenzenes with dioxazolones. This
protocol has been applied to a wide range of substrates, and
typically proceeds with excellent levels of chemoselectivity as
well as with high functional group tolerance. Additionally, this
protocol allows the generation of an array of ortho-amidated
[7]
For selected examples on C−H functionalization of azobenzenes, see:
a) Y. Lian, R. G. Bergman, L. D. Lavis, J. A. Ellman, J. Am. Chem. Soc.
2013, 135, 7122–7125; b) H. Li, P. Li, L. Wang, Org. Lett. 2013, 15,
620–623; c) K. Muralirajan, C.-H. Cheng, Chem. Eur. J. 2013, 19,
6198–6202; d) H. Li, P. Li, H. Tan, L. Wang, Chem. Eur. J. 2013, 19,
14432–14436; e) Z.-Y. Li, D.-D. Li, W. G. Wang, J. Org. Chem. 2013,
This article is protected by copyright. All rights reserved