Succinct Synthesis of
â-Amino Acids
A R T I C L E S
1
4
2
3
Figure 2. Isoxazoline strategy for the synthesis of â-amino acids. If R and R or R and R are covalently linked, access to cyclic â-amino acid analogues
such as the â-prolines can be envisioned.
analogues (“â-proline”), cis-2-aminocyclopentanoic acid (cispen-
tacin, 4) and trans-2-aminocyclopentanoic acid (5) (Figure
natively, â-amino acids can be accessed via a conjugate addition
of an amine into an acrylate; this transformation has been
6
11,12
1
c).
Illustrative of the relationship between stereochemistry
carried out asymmetrically by employing a chiral amine, a chiral
13
19
and structure, oligomers of 4 form strands, whereas oligomers
ester, or a chiral Lewis acid. However, extending this method
1
4
of 5 form helices. Due to their predictable and well-defined
structural characteristics, this class of â-amino acids has
enormous potential for the formation of higher order structures,
transitioning to protein-like structure and function for catalyst
development and pharmaceutical applications.15 As with their
R-amino acid counterparts, the formation of higher order
assemblies (discrete helical bundles or â-barrels, for example)
will be dependent upon interactions between side-chain func-
tional groups such as hydrophobic packing, salt bridges, and
to the synthesis of highly substituted targets is problematic as
it involves overcoming both the steric hindrance and the reduced
reactivity of the corresponding acrylates. Asymmetric catalytic
reduction of â-amino acrylates has provided a highly efficient
20
entry to various â-amino acids in high enantiomeric excesses,
although this method is limited by its intrinsic inability to access
geminally disubstituted â-amino acids such as 2, 3, or 6. Perhaps
the most versatile addition to the repertoire of synthetic
approaches is the addition of enolates to chiral imines,2 and
this has provided a method for the facile preparation of a range
of â-amino acids including a recent report of the parent trans-
1,22
1
6
hydrogen bonding. Efficient synthetic approaches to single
stereoisomers of both 4 and 5 have been reported,11,12 but the
introduction of additional substituents (e.g., 6) remains a
substantial synthetic challenge. Thus, the further development
of both classes of â-amino acids is contingent upon synthetic
strategies that will provide access to single stereoisomers of
these compounds.
23
â-proline (5) prepared via a chiral sulfinyl imine. Nonetheless,
this approach does not provide ready entry into certain classes
of highly substituted â-amino acids, particularly those with
sterically similar substituents at C3 (e.g., 2 and 3), for example,
or members of the cis-substituted â-proline class (e.g., 4 and
6). Thus, access to the highly substituted and/or conformationally
constrained â-amino acids remains a significant obstacle to the
study of â-peptides incorporating these building blocks.
To address this synthetic challenge, we developed an
orthogonal approach employing chiral isoxazolines as key
intermediates for the preparation of a diverse array of â-amino
acids, including the particularly challenging cyclic and highly
The essential synthetic challenge for the â-amino acid classes
described above is one shared by many synthetic targets,
including a diverse group of natural products and other
biologically active agents: stereocenters bearing an amine
17
substituent, in particular tertiary and quaternary stereocenters.
Thus, synthetic advances in highly substituted â-amino acid
preparation also impact a variety of fields. The traditional
method of â-amino acid synthesis, the Arndt-Eistert homolo-
2
4
substituted variants. Isoxazolines are readily accessible as
single stereoisomers via a 1,3-cycloaddition reaction between
a nitrile oxide and a chiral allylic alcohol employing the
1
3
gation, is a powerful approach for the preparation of â -amino
acids but is relatively ineffective for more substituted versions
because the yields and selectivities of the reaction suffer
significantly with increased substitution.18 In addition, cyclic
â-amino acids cannot be prepared using this approach. Alter-
25
conditions originally described by Kanemasa et al. and further
26
expanded by Carreira and co-workers (Figure 2). We reasoned
that nucleophilic addition to the C3 CdN bond of the isoxazo-
(
9) Abele, S.; Seiler, P.; Seebach, D. HelV. Chim. Acta 1999, 82, 1559-1571.
Seebach, D.; Abele, S.; Sifferlen, T.; H a¨ nggi, M.; Gruner, S.; Seiler, P.
HelV. Chim. Acta 1998, 81, 2218-2243.
(19) Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.; Tomioka, K. J. Am. Chem.
Soc. 2003, 125, 2886-2887. Hata, S.; Iguchi, M.; Iwasawa, T.; Yamada,
K.; Tomioka, K. Org. Lett. 2004, 6, 1721-1723. Hamashima, Y.; Somei,
H.; Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861-1864.
Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125,
16178-16179. Sibi, M. P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C.
P. J. Am. Chem. Soc. 2003, 125, 11796-11797. Palomo, C.; Oiarbide, M.;
Halder, R.; Kelso, M.; G o´ mez-Bengoa, E.; Garcia, J. M. J. Am. Chem.
Soc. 2004, 126, 9188-9189. Guerin, D. J.; Miller, S. J. J. Am. Chem. Soc.
2002, 124, 2134-2136. Myers, J. K.; Jacobsen, E. N. J. Am. Chem. Soc.
1999, 121, 8959-8960.
(
10) Seebach, D.; Sifferlen, T.; Mathieu, P. A.; H a¨ ne, A. M.; Krell, C. M.;
Bierbaum, D. J.; Abele, S. HelV. Chim. Acta 2000, 83, 2849-2864.
11) F u¨ l o¨ p, F. Chem. ReV. 2001, 101, 2181-2204.
(
(
12) LePlae, P. R.; Umezawa, N.; Lee, H. S.; Gellman, S. H. J. Org. Chem.
2
001, 66, 5629-5632.
(
(
(
13) Martinek, T. A.; T o´ th, G. K.; Vass, E.; Holl o´ si, M.; F u¨ l o¨ p, F. Angew. Chem.,
Int. Ed. 2002, 41, 1718.
14) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang,
X. L.; Barchi, J. J.; Gellman, S. H. Nature 1997, 387, 381-384.
15) Kimmerlin, T.; Namoto, K.; Seebach, D. HelV. Chim. Acta 2003, 86, 2104-
(20) Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.;
Sun, Y. K.; Armstrong, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler,
F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918-9919. Tang, W. J.; Wu,
S. L.; Zhang, X. M. J. Am. Chem. Soc. 2003, 125, 9570-9571.
(21) Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819-7832.
(22) Jacobsen, M. F.; Ionita, L.; Skrydstrup, T. J. Org. Chem. 2004, 69, 4792-
4796. C o´ rdova, A. Acc. Chem. Res. 2004, 37, 102-112. Matsunaga, S.;
Kumagai, N.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125,
4712-4713. Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.;
Sugiura, M. J. Am. Chem. Soc. 2003, 125, 2507-2515.
2
109. Gademann, K.; Kimmerlin, T.; Hoyer, D.; Seebach, D. J. Med. Chem.
2
001, 44, 2460-2468. Gelman, M. A.; Richter, S.; Cao, H.; Umezawa,
N.; Gellman, S. H.; Rana, T. M. Org. Lett. 2003, 5, 3563-3565. Gademann,
K.; Ernst, M.; Hoyer, D.; Seebach, D. Angew. Chem., Int. Ed. 1999, 38,
1
223-1226. Br u¨ ckner, A. M.; Chakraborty, P.; Gellman, S. H.; Dieder-
ichsen, U. Angew. Chem., Int. Ed. 2003, 42, 4395-4399. Kritzer, J. A.;
Lear, J. D.; Hodsdon, M. E.; Schepartz, A. J. Am. Chem. Soc. 2004, 126,
9
468-9469. Raguse, T. L.; Lai, J. R.; LePlae, P. R.; Gellman, S. H. Org.
Lett. 2001, 3, 3963-3966.
(23) Schenkel, L. B.; Ellman, J. A. Org. Lett. 2004, 6, 3621-3624.
(24) Minter, A. R.; Fuller, A. A.; Mapp, A. K. J. Am. Chem. Soc. 2003, 125,
6846-6847. Fuller, A. A.; Chen, B.; Minter, A. R.; Mapp, A. K. Synlett
2004, 1409-1413.
(
16) DeGrado, W. F.; Summa, C. M.; Pavone, V.; Nastri, F.; Lombardi, A. Annu.
ReV. Biochem. 1999, 68, 779-819. Micklatcher, C.; Chmielewski, J. Curr.
Opin. Chem. Biol. 1999, 3, 724-729.
(
17) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388-
(25) Kanemasa, S.; Nishiuchi, M.; Kamimura, A.; Hori, K. J. Am. Chem. Soc.
1994, 116, 2324-2339.
4
01.
(
18) Yang, H.; Foster, K.; Stephenson, C. R. J.; Brown, W.; Roberts, E. Org.
Lett. 2000, 2, 2177-2179.
(26) Bode, J. W.; Fraefel, N.; Muri, D.; Carreira, E. M. Angew. Chem., Int. Ed.
2001, 40, 2082-2085.
J. AM. CHEM. SOC.
9
VOL. 127, NO. 15, 2005 5377