2430
S.Y. Shaban et al.
spectral behavior and consequently the catecholase biomimetic catalytic activity of its
copper(II) complex. Based on the elemental analysis, mass spectra, and the results from
different physicochemical techniques employed in this study, a five-coordinate trigonal-
bipyramidal geometry was proposed for the newly synthesized [CuII(pytBuMe2N3)Cl2]
(1). To confirm the proposed structure, comparative spectral and magnetic investiga-
tions were carried out with the previously prepared copper(II) complex
[CuII(pytBuN3)Cl2] (2). The ability of 1 and 2 to oxidize 3,5-DTBC was studied and
the results demonstrated that there is no correlation between the rate of chloride
substitution and the observed catalytic activity. In assessing whether there is a
correlation between the Lewis acidity of the central copper(II) ion and catalytic
properties, no trend was observed for these complexes. Although 1 is the catalytically
most active species, its Lewis acidity is lower than that of 2. It appears that both the
Lewis acidity of the central copper(II) and redox potentials are of secondary importance
to chloride substitution in determining the catalytic properties of these complexes.
Acknowledgments
Kafrelsheikh University, Kafrelsheikh, Egypt, the University of Erlangen-Nuremberg,
Erlangen, Germany, and the Deutsche Forschungsgemeinschaft are thanked for
financial support.
References
[1] A.E. Shilov, G.B. Shul Pi. Chem. Rev., 97, 2879 (1997).
[2] B.B. Wentzel, M.P.J. Donners, P.L. Alsters, M.C. Feiters, R.J.M. Notlte. Tetrahedron Lett., 56, 7797
(2000).
[3] (a) M. Trivedi, D.S. Pandey, Q. Xu. Inorg. Chim. Acta, 3607, 2492 (2007); (b) F. Calderazzo, U. Englert,
G. Pampaloni, R. Santi, A. Sommazzi, M. Zinna. Dalton Trans., 914 (2005).
[4] J. Scott, S. Gambarotta, I. Korobkov, Q. Knijnenburg, B. de Bruin, P.H.M. Budzelaar. J. Am. Chem.
Soc., 127, 17204 (2005), and references therein.
[5] S.Y. Shaban, F.W. Heinemann, R. van Eldik. Eur. J. Inorg. Chem., 3111 (2009).
[6] (a) F. Thaler, C.D. Hubbard, F.W. Heinemann, R. van Eldik, S. Schindler, I. Fabian, A.M. Dittler-
Klingemann, F.E. Hahn, C. Orvig. Inorg. Chem., 37, 4022 (1998); (b) A. Company, J.-E. Jee, X. Ribas,
J.M. Lopez-Valbuena, L. Gomez, M. Corbella, A. Llobet, J. Mahıa, J. Benet-Buchholz, M. Costas, R.
van Eldik. Inorg. Chem., 46, 9098 (2007); (c) M.M. Ibrahim, S.Y. Shaban. Inorg. Chim. Acta, 362, 1471
(2009); (d) D.E. Fenton. Chem. Soc. Rev., 28, 159 (1999); (e) G.R. Cayley, I.D. Kelly, P.F. Knowles,
K.D.S. Yadav. J. Chem. Soc., Dalton Trans., 2370 (1981).
[7] (a) N. Wei, N.N. Murthy, Q. Chen, J. Zubieta, K.D. Karlin. Inorg. Chem., 33, 1953 (1994); (b) N.
Kitajima, T. Koda, S. Hashimoto, T. Kitagawa, Y. Moro-oka. J. Am. Chem. Soc., 113, 5664 (1991).
[8] G.J.P. Britovsek, M. Bruce, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S. Mastroianni, S.J. McTavish,
C. Redshaw, G.A. Solan, S. Strolmberg, A.J.P. White, D.J. Williams. J. Am. Chem. Soc., 121, 8728
(1999).
[9] R. van Eldik, W. Gaede, S. Wieland, J. Kraft, M. Spitzer, D.A. Palmer. Rev. Sci. Instrum., 64, 1355
(1993).
[10] M. Spitzer, F. Gartig, R. van Eldik. Rev. Sci. Instrum., 59, 2002 (1988).
[11] A.M. Ramadan, I.M. El-Mehasseb. Trans. Met. Chem., 23, 183 (1998), and references cited therein.
[12] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York
(1986).
[13] (a) B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam (1968); (b) C.J. Ballhausen, H.B.
Gray. Inorg. Chem., 1, 111 (1962).
[14] (a) D.X. West, A.A. Nassar, F.A. EI-Saied, M.I. Ayad. Trans. Met. Chem., 23, 321 (1998).