8586
J . Org. Chem. 1996, 61, 8586-8590
Asym m etr ic Red u ction of a 1,5-Ben zoth ia zep in e Der iva tive w ith
Sod iu m Bor oh yd r id e-(S)-r-Am in o Acid s: An Efficien t Syn th esis of
a Key In ter m ed ia te of Diltia zem
Shin-ichi Yamada,* Yoshikazu Mori,† Katsuji Morimatsu,† Yoshinori Ishizu,‡ Yasuhiko Ozaki,
Ryuzo Yoshioka, Tadashi Nakatani,§ and Hiroyasu Seko†
Pharmaceutical Development Research Laboratory, Tanabe Seiyaku Co., Ltd., 16-89, Kashima-3-chome,
Yodogawa-ku, Osaka 532, J apan
Received May 22, 1996X
A key intermediate of diltiazem synthesis, (2S,3S)-2,3-dihydro-3-hydroxy-2-(4-methoxyphenyl)-1,5-
benzothiazepin-4(5H)-one [(2S,3S)-1], has been efficiently synthesized by an asymmetric reduction
of the prochiral ketone, 2-(4-methoxyphenyl)-1,5-benzothiazepine-3,4(2H,5H)-dione (3), with NaBH4
and chiral R-amino acids. As the chiral sources, â-branched-chain amino acids, such as (S)-valine,
(S)-isoleucine, and (S)-tert-leucine, were found to be effective. In particular, using (S)-tert-leucine
as a ligand resulted in the formation of (2S,3S)-1 with excellent enantioselectivity. (95% ee for
cis-isomers). The addition of AcOH to the reaction permitted further improvement of both conversion
and stereoselectivity. As a result, optically pure (2S,3S)-1 could be isolated in 86% yield. This
asymmetric reduction proceeded via dynamic kinetic resolution and made it possible to control the
two adjacent asymmetric carbons through keto-enol tautomerism.
In tr od u ction
method. However, even these optical resolutions have
an inevitable disadvantage in that the theoretical maxi-
mum yield of the desired isomer does not exceed 50%.
Lately, asymmetric syntheses5 have been extensively
studied from the view point of their high efficiency. In
these, biochemical asymmetric reduction of the prochiral
ketone 2-(4-methoxyphenyl)-1,5-benzothiazepine-3,4-
(2H,5H)-dione (3)6 to (2S,3S)-2,3-dihydro-3-hydroxy-2-(4-
methoxyphenyl)-1,5-benzothiazepin-4(5H)-one [(2S,3S)-
1] was reported.7 As for the chemical reduction of the
ketone, Morimoto et al. also reported that reduction with
NaBH4 gave the cis-hydroxy benzothiazepine stereose-
lectively.8
Generally, NaBH4 is used as a mild and selective
reducing agent, and reducing reagents modified with
chiral sources are very useful for the asymmetric reduc-
tion of ketones. For example, use of phase transfer
catalysts,9 protein,10 amino acids,11 monosaccharide de-
rivatives,12 and carboxylic acids12f,13 as chiral sources have
been reported in ketone reductions. This information
Today diltiazem (4),1 a representative calcium antago-
nist, is used throughout the world as a remedy for angina
and hypertension. Diltiazem is a 1,5-benzothiazepine
derivative and has two asymmetric carbon atoms at the
C-2 and C-3 positions. Among the possible diastereo-
mers, the (2S,3S)-isomer exhibits strong coronary va-
sodilating activity; therefore, stereoselective synthesis of
the (2S,3S)-isomer has been attracting great attention.
Diltiazem has been prepared through chemical2 or
enzymatic3 optical resolutions of its intermediates. Re-
cently, enzymatic preparation4 of an intermediate, (2R,3S)-
3-(4-methoxyphenyl)glycidic acid methyl ester, has been
utilized in industrial production as a more economical
† Present address: Production Technology Division.
‡ Present address: Patent Division.
§ Present address: Osaka Plant.
X Abstract published in Advance ACS Abstracts, October 15, 1996.
(1) (a) Kugita, H.; Inoue, H.; Ikezaki, M.; Konda, M.; Takeo, S. Chem.
Pharm. Bull. 1971, 19, 595. (b) Sato, M.; Nagao, T.; Yamaguchi, I.;
Nakajima, H.; Kiyomoto, A. Arzneim. Forsch. 1971, 21, 1338. (c) Abe,
K.; Inoue, H.; Nagao, T. Yakugaku Zasshi 1988, 108, 716.
(2) (a) Inoue, H.; Takeo, S.; Kawazu, M.; Kugita, H. Yakugaku Zasshi
1973, 93, 729. (b) Senuma, M.; Shibazaki, M.; Nishimoto, S.; Shibata,
K.; Okamura, K.; Date, T. Chem. Pharm. Bull. 1989, 37, 3204. (c)
Yamamoto, M.; Hayashi, M.; Masaki, M.; Nohira, H. Tetrahedron:
Asymmetry 1991, 2, 403.
(6) Tanabe Seiyaku Co. Ltd. J pn. Patent 60-25982, 1985.
(7) Matsumae, H.; Douno, H.; Yamada, S.; Nishida, T.; Ozaki, Y.;
Shibatani, T.; Tosa, T. J . Ferment. Bioeng. 1995, 79, 28.
(8) Morimoto, M.; Kohno, H.; Yasuda, K.; Date, T.; Takamura, N.;
Sugasawa, S. Heterocycles 1990, 30, 471.
(9) (a) Masse´, J . P.; Parayre, E. R. J . Chem. Soc., Chem. Commun.
1976, 438. (b) Colonna, S.; Fornasier, R. J . Chem. Soc., Perkin Trans.
1 1978, 371. (c) Horner, L.; Brich, W. Liebigs Ann. Chem. 1978, 710.
(d) Kinishi, R.; Nakajima, Y.; Oda, J .; Inouye, Y. Agric. Biol. Chem.
1978, 42, 869. (e) Shida, Y.; Ando, N.; Yamamoto, Y.; Oda, J .; Inouye,
Y. Agric. Biol. Chem. 1979, 43, 1797.
(3) (a) Akita, H.; Enoki, Y.; Yamada, H.; Oishi, T. Chem. Pharm.
Bull. 1989, 37, 2876. (b) Gentile, A.; Giordano, C.; Fuganti, C.; Ghirotto,
L.; Servi, S. J . Org. Chem. 1992, 57, 6635. (c) Kanerva, L. T.; Sundholm,
O. J . Chem. Soc., Perkin Trans. 1 1993, 1385. (d) Kanerva, L. T.;
Sundholm, O. J . Chem. Soc., Perkin Trans. 1 1993, 2407.
(4) Matsumae, H.; Furui, M.; Shibatani, T. J . Ferment. Bioeng. 1993,
75, 93.
(10) Sugimoto, T.; Matsumura, Y.; Tanimoto, S.; Okano, M. J . Chem.
Soc., Chem. Commun. 1978, 926.
(5) (a) Shionogi and Co. Ltd. J pn. Patent 59-196878, 1984.; U.S.
Patent 4,552,695, 1985. (b) Fuji Chemical, J pn. Patent 61-268663, 1986.
(c) Watson, K. G.; Fung, Y. M.; Gredley, M.; Bird, G. J .; J ackson, W.
R.; Gountzos, H.; Matthews, B. R. J . Chem. Soc., Chem. Commun.
1990, 1018. (d) Marion Laboratories, Inc. J pn. Patent 2-17169, 1990.
(e) Miyata, O.; Shinada, T.; Ninomiya, I.; Naito, T. Tetrahedron Lett.
1991, 32, 3519. (f) Schwartz, A.; Madan, P. B.; Mohacsi, E.; O'Brien,
J . P.; Todaro, L. J .; Coffen, D. L. J . Org. Chem. 1992, 57, 851. (g)
Matsuki, K.; Sobukawa, M.; Kawai, A.; Inoue, H.; Takeda, M. Chem.
Pharm. Bull. 1993, 41, 643. (h) J acobsen, E. N.; Deng, L.; Furukawa,
Y.; Mart´ınez, L. E. Tetrahedron. 1994, 50, 4323. (i) Nishida, T.;
Matsumae, H.; Machida, I.; Shibatani, T. Biocatal. Biotransformation.
1995, 12, 205. (j) Geneˆt, J . P.; Andrade, M. C. C.; Ratovelomanana-
Vidal, V. Tetrahedron Lett. 1995, 36, 2063. (k) Takahashi, T.; Muraoka,
M.; Capo, M.; Koga, K. Chem. Pharm. Bull. 1995, 43, 1821.
(11) Umino, N.; Iwakuma, T.; Itoh, N. Chem. Pharm. Bull. 1979,
27, 1479.
(12) (a) Hirao, A.; Mochizuki, H.; Nakahama, S.; Yamazaki, N. J .
Org. Chem. 1979, 44, 1720. (b) Hirao, A.; Nakahama, S.; Mochizuki,
D.; Itsuno, S.; Ohowa, M.; Yamazaki, N. J . Chem. Soc., Chem.
Commun. 1979, 807. (c) Morrison, J . D.; Grandbois, E. R.; Howard, S.
I. J . Org. Chem. 1980, 45, 4229. (d) Hirao, A.; Nakahama, S.;
Mochizuki, H.; Itsuno, S.; Yamazaki, N. J . Org. Chem. 1980, 45, 4231.
(e) Hirao, A.; Ohwa, M.; Itsuno, S.; Mochizuki, H.; Nakahara, S.;
Yamazaki, N. Bull. Chem. Soc. J pn. 1981, 54, 1424. (f) Hirao, A.;
Mochizuki, H.; Zoorob, H. H. A.; Igarashi, I.; Itsuno, S.; Ohwa, M.;
Nakahama, S.; Yamazaki, N. Agric. Biol. Chem. 1981, 45, 693.
(13) (a) Yatagai, M.; Ohnuki, T. J . Chem. Soc., Perkin Trans. 1 1990,
1826. (b) Polyak, F. D.; Solodin, I. V.; Dorofeeva, T. V. Synth. Commun.
1991, 21, 1137.
S0022-3263(96)00950-4 CCC: $12.00 © 1996 American Chemical Society